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Abstract

We investigate quantifier-free induction for Lisp-like lists constructed in-
ductively from the empty list nil and the operation cons, that adds an el-
ement to the front of a list. First we show that, for m ≥ 1, quantifier-free
m-step induction does not simulate quantifier-free (m + 1)-step induction.
Secondly, we show that for all m ≥ 1, quantifier-free m-step induction does
not prove the right cancellation property of the concatenation operation on
lists defined by left-recursion.

Keywords: weak theories of arithmetic, theories of lists, automated inductive
theorem proving, transfinite lists

1 Introduction

In this article we consider Lisp-like lists in the context of the automation of proof
by mathematical induction. The subject of automated inductive theorem prov-
ing (AITP) aims at automating the process of proving statements about induc-
tively constructed objects such as natural numbers, lists and trees. The formal
verification of software is a particularly prominent application of automated induc-
tive theorem proving. Since every non-trivial program contains loops or recursion,
some form of mathematical induction is necessary to reason about such programs.
By Gödel’s incompleteness theorem the task addressed by AITP is in general not
even semi-decidable. Therefore, there is a lot more freedom in the choice of the
proof systems than in the case of first-order validity. For that reason and because
of technical constraints, a great variety of methods have been developed for that
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purpose. To name just a few examples, there are methods based on recursion anal-
ysis [BvHH+89], integration into saturation-based provers [RV19, KP13, Cru17],
cyclic proofs [BGP12], theory exploration [CJRS13], proof by consistency [Com01].

The current methodology in automated inductive theorem proving concen-
trates primarily on the implementation of systems and their empirical evaluation.
The work in this article is part of a research program that aims at complementing
this state of the art by focusing on the formal analysis of methods for automated
inductive theorem proving. In particular, we aim at understanding the theoretical
limits of systems by developing upper bounds on the logical strength of methods.
Establishing sufficiently tight upper bounds on the strength of AITP systems of-
ten allows us to provide practically meaningful unprovability results whereas an
empirical evaluation only shows the failure of a particular implementation. More-
over, upper bounds typically reveal the particular form of induction underlying
the AITP systems. This knowledge permits the direct comparison of methods and
helps in judging the applicability of AITP systems to certain domains.

So far the work in this research program [HW18, HV20, HV22, HV23, Vie22]
has concentrated on induction for natural numbers only. However, since lists and
other inductive data types are fundamental structures of computer science, it is of
paramount importance for the subject of AITP to analyze the mechanical prop-
erties of these inductive datatypes. In this article we make a first important step
towards extending this research program to inductively defined lists. In particular,
we show that the right cancellation property of the concatenation of lists is not
provable by a form of induction used in some automated inductive theorem prov-
ing systems. With this result we pave the way for obtaining further unprovability
results for AITP systems on lists and other inductive data types.

In the following we briefly mention some aspects of axiomatic theories of finite
lists have been studied in theoretical computer science. In [MR81] an axiomatic
theory of linear lists (Lisp-like lists) is defined and some basic results about consis-
tency, completeness, and independency of the axioms are shown. Similar theories
are considered in a more general setting in [Opp78]. In [Gon86, Baz15, AB19] the
computability aspects of list structures are investigated.

Axiomatic theories of lists are closely related to theories of concatenation stud-
ied in logic [Tar35, Qui46]. Theories of concatenation axiomatise strings of symbols
over a finite alphabet. Theories of concatenation have been proposed as alternative
basic systems for the development of metamathematical results such as Gödel’s in-
completeness theorems and computability [Vis09, Grz05, GZ08, CFM74, Tha66].
In such theories there is no need to develop a coding of finite sequences [Qui46,
Grz05]. Hence, theories of concatenation permit a more natural development of
syntax.

In this article we consider the provability of the right-cancellation of the con-
catenation of finite lists from quantifier-free big-step first-order induction for Lisp-
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like lists. After recalling some basic concepts and notations in Section 2, we show
the two main results of this article in Sections 3 and 4. First, in Section 3, we
show that in general m-step quantifier-free induction does not prove (m+ 1)-step
quantifier-free induction. This results sets induction on lists in contrast with in-
duction for natural numbers where big-step quantifier-free induction is not stronger
than one-step quantifier-free induction. Secondly, in Section 4, we show that for
all m ≥ 1, m-step induction, over the language consisting of the list constructors
and a concatenation operator, does not prove the right cancellation property of
the concatenation operation. In order to show these unprovability results we will
construct models whose domain contains sequences of transfinite length.

2 Preliminaries

In this section we introduce some concepts, notations, and results that we will use
throughout the article. In Section 2.1 we recall some basic concepts and notations
of many-sorted first-order logic. Section 2.2 defines some basic axioms of the
list constructors and the traditional induction schema for lists as well as related
terminology. Finally, in Section 2.3 we introduce some concepts on transfinite
sequences, which we will use in the model theoretic constructions of Section 3 and
Section 4.

2.1 Many-sorted first-order logic

We work in the setting of classical many-sorted first-order logic with equality. Let
S be a finite set of sorts, then for each sort s ∈ S we let Vs be a countably
infinite set of variable symbols of the sort s. We write x : s to indicate that x
is a variable symbol of sort s, that is, x ∈ Vs. When the sort of a variable is
irrelevant or clear from the context, we omit the sort annotation and simply use
the variable symbol. We assume that the sets of variable symbols for the sorts in
S are pairwise disjoint. A many-sorted first-order language L over the sorts S is
a set of predicate symbols of the form P : s1 × · · · × sn → o and function symbols
of the form f : s1 × · · · × sn → sn+1, where P, f are symbols, s1, . . . , sn, sn+1 ∈ S
and o is a special sort symbol assumed not to appear in S. For a function symbol
f the expression f : s1 × · · · × sn → sn+1 with s1, . . . , sn+1 ∈ S indicates that
f takes arguments of sorts s1, . . . , sn to a value of sort sn+1. Similarly, for a
predicate symbol P the expression of the form P : s1×· · ·× sn → o indicates that
P is a predicate with arguments of sorts s1, . . . , sn. Terms of L are constructed as
usual from the variable symbols and function symbols according to their respective
types. Each constructed term t has a uniquely determined sort s and, therefore,
we call t an s-term. Formulas of L are constructed from terms, predicate symbols,
the connectives ⊤, ⊥, ∧, ¬, ∨, → and the quantifiers (∀x : s), (∃x : s) for s ∈ S
and x ∈ Vs.
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In this article we will make heavy, albeit elementary, use of model theoretic
techniques. Hence, we recall some basic model theoretic concepts and notations.
A first-order structure M for the language L (over sorts S) is a function that
assigns: To each sort s ∈ S a non-empty set M(s); To each function symbol
f : s1×· · ·×sn → sn+1 a function fM :×n

i=1M(si) →M(sn+1); To each predicate
symbol P : s1×· · ·×sn → o a set PM ⊆×n

i=1M(si). A variable assignment σ is a
function that assigns to each variable symbol v : s with s ∈ S an element of M(s).
We write M,σ |= φ if the formula φ is true in M under the variable assignment σ.
Let φ(x1 : s1, . . . , xn : sn, y⃗) be a formula and di ∈M(si) for i = 1, . . . , n, then we
write M, {xi 7→ di | i = 1, . . . , n} |= φ (or M |= φ(d1, . . . , dn, y⃗)) if M,σ |= φ, for
all variable assignments σ with σ(xi) = di for i = 1, . . . , n. Thus, in particular,
M |= φ if M,σ |= φ for all variable assignments σ. Let t(x1 : s1, . . . , xn : sn) be a
term and d1, . . . , dn a finite sequence in M(s1)×· · ·×M(sn), then we write tM (d⃗)
to denote the element b of M such that M, {xi 7→ di | i = 1, . . . , n} |= t = b.

In the arguments given in Sections 3 and 4 it is often necessary to consider
terms and formulas of a language L under some partial variable assignment over
an L structure M . In order to simplify the notation, we let L(M) denote the
language L extended by a fresh function symbol cd : s for each element d ∈M(s)
and sort s ∈ S. Moreover, we let the structure M interpret the language L(M)
by letting M interpret cd as the object d.

In this article we define a theory T to be a set of sentences, which we call the
axioms of T . Let φ be formula, then we write T ⊢ φ if φ is provable in (many-
sorted) first-order logic from the axioms of T . Let T1, T2 be theories, then T1+T2
denotes the theory axiomatized by the set of sentences T1 ∪ T2.

Finally, let us define some notation for some particular sets of formulas. By
Open(L) we denote the set of quantifier-free formulas of the language L. Let Φ be
a set of formulas, then we write ∀1(Φ) (∃1(Φ)) for the set of formulas in Φ of the
form (∀x⃗)φ ((∃x⃗)φ) where φ is a quantifier-free formula and x⃗ is a possibly empty
sequence of variables. We also write ∀1(L) for the formulas of the above form in
the language L.

2.2 Induction and lists

In this section we introduce the basic construction of finite Lisp-like lists that we
work with in this article. We also recall the traditional induction schema for lists
and its related terminology. Throughout the article we will consider various forms
of induction that will be defined when needed. We use the traditional induction
schema as defined in this section as a reference in the sense that we justify the
other induction schemata in terms of the traditional one.

Now we will define the basic language of finite Lisp-like lists and the corre-
sponding induction schema.
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Definition 2.1. The language L0 consists of the sort i of elements and the sort
list of finite lists. Moreover, the language L0 contains the function symbols nil : list
and cons : i× list → list.

Informally, the symbol nil denotes the empty list and cons denotes the opera-
tion that adds a given element to the front of a given list. For the sake of legibility
we will use upper case letters X, Y , Z and variants thereof to denote variables
that range over the sort list. For these variables we omit the the sort annotation,
that is, the “: list” part.

The traditional induction schema for Lisp-like lists is analogous to the one for
natural numbers with the exception that the induction step also quantifies over
elements.

Definition 2.2. Let φ(X, z⃗) be a formula, then the formula IXφ is given by

(φ(nil , z⃗) ∧ (∀X)(∀x)(φ(X, z⃗) → φ(cons(x,X), z⃗)))) → (∀X)φ(X, z⃗).

For a set of formulas Φ, the theory Φ-IND is axiomatized by the universal closure
of the formulas IXφ, where φ(X, z⃗) ∈ Φ.

The induction schema given above is parameterized by the set of possible induc-
tion formulas. This permits to consider various theories by varying the structure
of the induction formulas.

We will also refer to the above induction principle as one-step induction, since
the induction step proceeds by a step of size one. In Section 3 we will introduce
the big-step induction principle that proceeds in larger steps.

When we work with theories of lists we usually work over the following base
theory that provides the disjointness and the injectivity of the list constructors nil
and cons.

Definition 2.3. The theory T0 is axiomatized by the following axioms

nil ̸= cons(x,X), (L0.1)
cons(x,X) = cons(y, Y ) → x = y ∧X = Y. (L0.2)

2.3 Transfinite sequences

In this section we introduce some notations and definitions related to transfinite
sequences, that is, sequences indexed by ordinals. Later on in Sections 3 and 4, we
will heavily rely on transfinite sequences, of length up to ω3, for the construction
of non-standard models of induction over lists.

Let X be a set and α be an ordinal number, then as usual Xα denotes the
set {f : α → X} of sequences of elements of X with length α. If a ∈ Xα and
β < α then we write aβ for a(β), the element of a with index β. By X<α (X≤α)
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we denote the set
⋃
β<αX β (

⋃
β≤αX β). In particular, we denote by X ∗ the set

X<ω =
⋃
i∈NX i of all finite sequences of elements of X . Let a ∈ X≤α, then |a|

denotes the ordinal β ≤ α such that a ∈ X β . The empty sequence () (= ∅) is also
denoted by ε and (x) denotes the one element sequence {0 7→ x}.

In the following we define concatenation of ordinal indexed sequences. The
definition as given below relies on the well-definedness of ordinal subtraction of an
ordinal β from an ordinal α when α ≥ β (see [TZ71, Theorem 8.8]).

Definition 2.4. Let X be a set, α, β ordinals, a ∈ Xα, and b ∈ X β, then the
sequence a ⌢ b ∈ Xα+β is defined by

(a ⌢ b)γ :=

{
aγ if γ < α

bδ otherwise
,

where γ < α+ β and δ is the unique ordinal such that α+ δ = γ.

Observe that the definition of concatenation of ordinal indexed sequences given
above generalizes the concatenation of finite sequences, since

(a0, . . . , an−1)⌢ (b0, . . . , bm−1) = (a0, . . . , an−1, b0, . . . , bm−1).

The concatenation of ordinal indexed sequences as defined above has some inter-
esting properties.

Lemma 2.5. Let X be a set, α, β, γ ordinals, a ∈ Xα, b ∈ X β, c ∈ X γ, then we
have:

(i) associativity: a ⌢ (b ⌢ c) = (a ⌢ b)⌢ c;

(ii) left cancellation: If a ⌢ b = a ⌢ c, then b = c.

Proof. For (i) let µ < α+ β + δ. By the associativity of ordinal addition we have
a ⌢ (b ⌢ c), (a ⌢ b) ⌢ c ∈ Xα+β+γ . Now we have to consider three cases. If
µ < α, then µ < α+ β. Hence

(a ⌢ (b ⌢ c))µ = aµ = (a ⌢ b)µ = ((a ⌢ b)⌢ c)µ.

If α ≤ µ < α+ β, then there is a unique ordinal δ such that α+ δ = µ. Moreover,
by the monotonicity properties of ordinal addition we have δ < β. Hence

(a ⌢ (b ⌢ c))µ = (b ⌢ c)δ = bδ = (a ⌢ b)µ = ((a ⌢ b)⌢ c)µ.

Finally, if α + β ≤ µ < α + β + γ, then there are unique δ1 and δ2 such that
α + δ1 = µ and α + β + δ2 = µ. Furthermore, we have δ1 ≥ β, hence there is δ3
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such that β + δ3 = δ1. Thus µ = α+ δ1 = α+ β + δ3 = α+ β + δ2, hence δ2 = δ3.
Therefore

(a ⌢ (b ⌢ c))µ = (b ⌢ c)β+δ3 = cδ3 = cδ2 = ((a ⌢ b)⌢ c)µ.

For (ii) observe that since a ⌢ b ∈ Xα+β , a ⌢ c ∈ Xα+γ we have α+β = α+γ
and therefore by the left cancellation of ordinal addition β = γ. Now let δ < β,
then we have (a ⌢ b)α+δ = bδ = cδ = (a ⌢ c)α+δ. Hence, b = c.

Observe, however, that since ordinal addition does not have right cancellation,
the concatenation of ordinal indexed sequences does clearly also not have right
cancellation.

For sequences we will often be interested in suffixes. In the following definition
we introduce some notation for accessing the suffix of a sequence.

Definition 2.6 (Sequence suffix). Let X be a set, α, β ordinals with β ≤ α, and
a ∈ Xα, then the sequence a ↑ β is given by

(a ↑ β)γ = aβ+γ ,

for γ < µ where µ is the unique ordinal such that β + µ = α.

Finally, let us give some notation for the sequence obtained by concatenating
sequences of uniform length. This construction will be used in Section 4 and relies
on ordinal division with remainder (see [TZ71, Theorem 8.27]).

Definition 2.7. Let X be a set, α, β ordinals with α > 0, and a ∈ (Xα)β. The
sequence ⌊a⌋ ∈ Xα·β is defined by

⌊a⌋ξ := aδ,µ,

for ξ < α ·β where µ, δ are the unique ordinals such that ξ = (α ·δ)+µ with µ < α.
Furthermore, for a ∈ Xα, we denote by aβ the sequence ⌊(a)γ<β⌋ consisting of β
times the sequence a.

Example 2.8. Let a = 0, 2, 4, 6, . . . ∈ Nω be the sequence of even numbers and
b = 1, 3, 5, 7, . . . ∈ Nω be the sequence of odd numbers. Then, e.g., a0 = 0, b0 = 1,
and b1 = 3. Let a = (a, b) ∈ (Nω)2. Then, in the notation of Definition 2.7,
α = ω, β = 2, and ⌊a⌋ = a ⌢ b = 0, 2, 4, 6, . . . 1, 2, 5, 7, . . . ∈ Nω·2. For, e.g.,
ξ = ω + 3, we have δ = 1 and µ = 3, so ⌊a⌋ξ = aδ,µ = bµ = 7. Moreover,
⌊a⌋ ↑ 2 = 4, 6, 8, . . . 1, 3, 5, . . . and ⌊a⌋ ↑ ω = b.
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3 Big-step induction

Big-step induction is a generalization of the induction principle of Definition 2.2
in which the induction step proceeds by adding more than one element. Big-step
induction and other induction principles are often used in automated inductive
theorem provers [BBHI05]. Some formulas can be proved more naturally by a
special induction principle. Hence a special induction principle may allow a prover
to find a proof faster under the constraints of its proof search algorithm or even
enable the prover to prove the formula in the first place [Vie22]. It is therefore
interesting to investigate the relation between the one-step induction principle and
special induction principles implemented in AITP systems.

In this section we show the first main result of this article, namely that, for
all m ≥ 1, quantifier-free (m + 1)-step induction for lists does not follow from
quantifier-free m-step induction. In particular, quantifier-free big-step induction
for lists cannot be reduced to quantifier-free one-step induction, which is in con-
trast to induction on natural numbers where such a reduction is possible (see for
example [Vie22]).

The definition below defines the big-step induction principle for lists considered
in this article. Let us introduce some notation to make it easier to state big-step
induction for lists. Let t1, . . . , tn be a possibly empty list of terms of sort i and T
a term of sort list, then the term cons(t1, . . . , tn;T ) is defined inductively by

cons(;T ) = T,

cons(t1, . . . , tn+1;T ) = cons(t1, . . . , tn, cons(tn+1, T )).

Definition 3.1. Let φ(x, z⃗) be a formula and m ≥ 1, then the formula Ix↷mφ is
given by

∧
i=1,...,m

(∀x1, . . . , xi−1)φ(cons(x1, . . . , xi−1;nil), z⃗)

∧ (∀X)(∀x1, . . . , xm)(φ(X, z⃗) → φ(cons(x1, . . . , xm;X), z⃗))

→ (∀X)φ(X, z⃗).

Let Φ be a set of formulas and m ≥ 1, then the m-step induction schema Φ-IND↷m

over Φ is axiomatized by the universal closure of the formulas Ix↷mφ where φ(x, z⃗) ∈
Φ.

A simple example of formulas that have natural proofs by big-step induction
are the acyclicity formulas given below, which express that adding a finite number
n ≥ 1 of elements to a list results in a different list:

X ̸= cons(x1, . . . , xn;X). (⋆)

To prove this formula by n-step induction it suffices to proceed by induction
on X in the formula itself. For the base case we have to show that nil ̸=
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cons(x1, . . . , xn;nil), which follows readily from (L0.1). For the induction step
we assume (⋆). For a contradiction assume

cons(x′1, . . . , x
′
n;X) = cons(x1, . . . , xn, x

′
1, . . . , x

′
n;X).

Then by an n-fold application of (L0.2) we obtain x′i = xi for i = 1, . . . , n and

X = cons(x′1, . . . , x
′
n;X).

This contradicts the induction hypothesis and thus completes the induction step.
Interestingly, however, the acyclicity formula (⋆) also has a slightly less natural
proof using one-step quantifier-free induction.

Lemma 3.2. The theory T0 +Open(L0)-IND proves

(i) X ̸= cons(x1, . . . , xn;X) for n ≥ 1;

(ii) X = nil ∨ (∃x′)(∃X ′)X = cons(x′, X ′).

Proof. For (i) we assume X = cons(x1, . . . , xn;X) and proceed by induction on
X ′ in the formula

X ′ ̸= X︸ ︷︷ ︸
ψ1(X′)

∧X ′ ̸= cons(xn, X)︸ ︷︷ ︸
ψ2(X′)

∧ · · · ∧X ′ ̸= cons(x2, . . . , xn;X)︸ ︷︷ ︸
ψn(X′)

.

For the base case we have to show ψi(nil) for i = 1, . . . , n. For i > 1, this
follows easily from (L0.1) and for i = 0 we obtain X ′ ̸= X from the assump-
tion X = cons(x1, . . . , xn;X) and (L0.1). For the induction step we assume∧n
i=1 ψi(X

′). Let i ∈ {1, . . . , n}. If i = 1 assume cons(x′, X ′) = X, then by the as-
sumption X = cons(x1, . . . , xn;X) and (L0.2) we obtain X ′ = cons(x2, . . . , xn;X)
which contradicts the assumption ψn(X

′). If i > 1, then assume cons(x′, X ′) =
cons(xn−i+2, . . . , xn;X), then by (L0.2) we obtain X ′ = cons(xn−i+1, . . . , xn;X),
which contradicts ψi−1(X

′). Hence, we finally obtain (∀X ′)(
∧n
i=1 ψi(X

′)). Thus,
in particular, we have

∧
i=1 ψi(cons(x1, . . . , xn;X)). Therefore, we obtain

cons(x1, . . . , xn;X) ̸= X,

which contradicts the first assumption.
For (ii) we proceed by induction on Y in the formula X ̸= Y . For the base

case we have to show X ̸= nil . Assume X = nil , then we are done. For the
induction step, we assume X ̸= Y and X = cons(y, Y ) and we are done. Hence
we have (∀Y )X ̸= Y . Thus in particular X ̸= X, which is a contradiction and
thus implies the claim.
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This gives rise to the question whether a similar technique as we have used
to prove the acyclicity formulas with quantifier-free induction is also possible in
general. It is straightforward to see that we can simulate big-step induction with
single-step induction by making use of universal quantifiers and conjunction. For
the sake of completeness we recall the argument.

Lemma 3.3. Let m ≥ 1 and φ(X, z⃗) be a formula, then

⊢ IX
m∧
i=1

(∀x1). . . (∀xi−1)φ(cons(x1, . . . , xi−1;X), z⃗) → IX↷mφ(X, z⃗).

Proof. Assume (∀x1). . . (∀xi−1)φ(cons(x1, . . . , xi−1;nil), z⃗) for i = 1, . . . ,m and

(∀X)(∀x1). . . (∀xm)(φ(X, z⃗) → φ(cons(x1, . . . , xm;X), z⃗)). (⋆)

Clearly it suffices to show the following formula.

m∧
j=1

(∀x1). . . (∀xj−1)φ(cons(x1, . . . , xj−1;X), z⃗). (†)

We proceed by induction on X in the formula (†). The base case follows immedi-
ately from the assumptions. For the induction step case we assume (†). Now let
i ∈ {1, . . . ,m}, let x′, x1, . . . , xi−1 be fixed but arbitrary. If i < m, then we have to
show φ(cons(x1, . . . , xi−1, x

′;X), z⃗), which follows from the induction hypothesis
with j = i+1. If i = m, then we have to show φ(cons(x1, . . . , xm−1, x

′;X), z⃗). By
(†) with j = 1, we have φ(X, z⃗), hence by (⋆) we obtain the desired formula.

Remark 3.4. When the domain of the elements provably consists of a finite
number of elements n ≥ 1, then the quantifiers over elements in the induction
formula of Lemma 3.3 can be replaced by a conjunction. Hence, in this situa-
tion (m + 1)-step induction reduces to m-step induction without an increase in
quantifier-complexity of the induction formulas.

However, as we will show, the increase of the quantifier complexity when sim-
ulating big-step induction with one-step induction is in general unavoidable. The
remainder of the section is devoted to the proof of the following proposition.

Definition 3.5. The language LA extends the base language of lists L0 by the
predicate symbol A : list → o.

Proposition 3.6. Let m ≥ 2, then

T0 +
⋃

1≤j<m
Open(LA)-IND↷j ̸⊢ Ix↷mA(x).
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This proposition entails, in particular, that T0+Open(LA)-IND ̸⊢ Open(LA)-IND↷2.
We will show the above claim by constructing a model of quantifier-free induction
over the language LA in which the predicate A does not satisfy two-step induction.
In such a model we call an element a standard element if it can be expressed as a
term of the form cons(x1, . . . cons(xn,nil)) under a suitable variable assignment.
All other elements are called the non-standard elements. By Lemma 3.2.(ii) a
non-standard element can be decomposed any finite number of times and thus
resemble transfinite sequences of length at least ω. The model constructed in Def-
inition 3.8 will use transfinite sequences of length up to ω as the non-standard
elements. Since for example the transfinite sequence vω with v ∈ N∗ satisfies
vω = v ⌢ vω it violates the acyclicity property X ̸= cons(x1, . . . , x|v|, X) (see
Lemma 3.2). Hence we have to avoid sequences that absorb a finite prefix.

The following definition introduces the non-standard elements that we use for
the model constructed in this section.

Definition 3.7. Let k ∈ N, then by Nk we denote the sequence (i)k≤i<ω. Now we
define

N := {w ⌢ Nk | w ∈ N∗, k ∈ N}.

Let N ∈ N , then there is a unique decomposition N = w ⌢ Nk such that |w| and
k are minimal. We write wN for this w and kN for this k. We call wN the main
prefix of N and NkN the main suffix of N .

We can now define a structure whose domain consists of the finite sequences
of natural numbers and the non-standard elements defined above.

Definition 3.8. Let m ≥ 1, then the structure Mm
1 interprets the sort i as the

natural numbers and the sort list as Mm
1 (list) = N∗ ∪ N . Furthermore, Mm

1 in-
terprets the list constructors as nilM

m
1 := ε and consM

m
1 (n, l) := (n) ⌢ l and the

predicate symbol A : list → o as

AM
m
1 := N∗ ∪ {N ∈ N | wN ̸= ε or m ∤ kN} .

We say that an element l1 is a predecessor of an element l2 if there are
k, n1, . . . , nk ∈ N such that Mm

1 |= l2 = cons(n1, . . . , nk; l1).
We start by observing that the structure defined above satisfies the basic ax-

ioms of the constructors nil and cons of finite sequences.

Lemma 3.9. Let m ≥ 1, then Mm
1 |= T0.

Proof. We start with the axiom (L0.1). We have nilM
m
1 = ε = ∅. Let n ∈ N and

l ∈Mm
1 (list), then (0, n) ∈ (n)⌢ l = consM

m
1 (n, l). Hence, nilM

m
1 ̸= consM

m
1 (n, l)

and therefore Mm
1 |= (L0.1). Now let n1, n2 ∈ N and l1, l2 ∈Mm

1 (list) and assume
that consM

m
1 (n1, l1) = (n1) ⌢ l1 = (n2) ⌢ l2. Clearly, n1 = n2, hence by

Lemma 2.5 we immediately obtain Mm
1 |= (L0.2).
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The following lemma shows that unary A predicates of Mm
1 , eventually peri-

odically become true on predecessors of non-standard elements.

Lemma 3.10. Let m ≥ 1, t(X) be a LA(Mm
1 ) term, then there is a K ∈ N such

that for all k ∈ N with k ≥ K and m ∤ k, Mm
1 |= A(t(Nk)).

Proof. There clearly is a w ∈ N∗ such thatMm
1 |= t(l) = w ⌢ l for all l ∈Mm

1 (list).
If w = ε, then we are done by letting K = 0. Otherwise, we let K = (w)|w|−1 +2.
For k ≥ K, the sequence Nk is the main suffix of the sequence w ⌢ Nk and the
main prefix of w ⌢ Nk is not empty. Thus Mm

1 |= A(t(Nk)).

Informally, the following lemma states that unary equational predicates over
elements of Mm

1 eventually stabilize.

Lemma 3.11. Let m ≥ 1 and E(X) an LA(Mm
1 ) equation. If Mm

1 ̸|= E(X) then
there exists K ∈ N such that firstly Mm

1 ̸|= E(w) for all w ∈ N∗ with |w| ≥ K and
secondly Mm

1 ̸|= E(Nk) for all k ≥ K.

Proof. The case where X /∈ Var(E) is trivial. Let E(X) be u(X) = v(X). If
X ∈ Var(u) and Var(v) = ∅, then there is w ∈ N∗ and l′ ∈ Mm

1 (list) such that
Mm

1 |= u(l) = w ⌢ l for all l ∈ Mm
1 (list) and Mm

1 |= v = l′. If |w| > |l′|, then
we are done by letting K = 0. Otherwise, if |w| ≤ |l′| we consider the prefix of
l′. If w is not a prefix of l′, then again we are done by letting K = 0. If w is the
prefix of l′, then l′ = w ⌢ l′′ for some l′′ ∈ N≤|l′|. We have l′′ ∈ Mm

1 (list), since
Mm

1 (list) is closed under predecessors. Thus Mm
1 |= E(l) if and only if l = l′′. If

l′′ is a standard element, then Mm
1 ̸|= E(l) for all l ∈ Mm

1 (list) with |l| > |l′′|.
Hence, we let K = |l′′|+ 1. Otherwise, if l′′ is non-standard, then we readily have
Mm

1 ̸|= E(l) for all l ∈ N∗. Furthermore, we have Mm
1 ̸|= E(l) for all non-standard

l ∈Mm
1 (list) with l0 ̸= l′′0 . Hence, it suffices to let K = l′′0 + 1.

Now let us consider the case where Var(u) ∩ Var(v) = {X}. There exist
w,w′ ∈ N∗ such that for all l ∈Mm

1 (list), Mm
1 |= u(l) = w ⌢ l and Mm

1 |= v(l) =
w′ ⌢ l. Moreover, by the assumption that Mm

1 ̸|= E(X) we have w ̸= w′. Hence,
Mm

1 ̸|= E(l) for all l ∈Mm
1 (list). Thus, we let K = 0.

We are now ready to show that the structure Mm
1 satisfies quantifier-free j-step

induction for 1 ≤ j < m over the language consisting of the list constructors nil ,
cons, and the predicate symbol A.

Lemma 3.12. Let m ≥ 2, then Mm
1 |=

⋃
1≤j<mOpen(LA)-IND↷j.

Proof. Let j ∈ N with 1 ≤ j < m and φ(X) be a quantifier-free LA(Mm
1 ) formula.

Assume that

Mm
1 |= φ(cons(x1, . . . , xi−1;nil)), (∗)

12



for i = 1, . . . , j and

Mm
1 |= φ(X) → φ(cons(x1, . . . , xj ;X)), (⋆)

Let l ∈Mm
1 (list). We have to show that Mm

1 |= φ(l). If l is standard, then we are
done by a straightforward induction on |l| making use of (∗) and (⋆).

Now let us consider the case where l is non-standard, that is, l ∈ N . Let
E1(X), . . . , En(X) be all the list equations of φ withMm

1 ̸|= Ei(X) for i = 1, . . . , n.
Then by Lemma 3.11 there exists K ∈ N such that Mm

1 ̸|= Ei(w) for all w ∈ N∗

with |w| ≥ K and Mm
1 ̸|= Ei(Nk) for all k ≥ K.

Now let A(t1(X)), . . . , A(tp(X)) be all the A atoms of φ. By Lemma 3.10,
there exists K ′ ≥ K such that for all k ∈ N with k ≥ K ′ and m ∤ k, we have
M |= A(tq(Nk)) for q = 1, . . . , p. Hence, by taking a sufficiently long prefix w
of l (|w| ≥ j), we obtain K ′′ ≥ K ′ such that l = w ⌢ NK′′ and m | K ′′ − 1.
Since m | K ′′ − 1 and j < m, we have m ∤ K ′′ + i for i = 0, . . . , j − 1. Thus,
Mm

1 |= A(tq(l ↑ |w| − i)) for q = 1, . . . , p and i = 0, . . . , j − 1.
Let ψ(X) be any atom of φ(X) and w′ ∈ N∗ with |w′| ≥ K, then by the above,

for i = 0, . . . , j − 1, we have Mm
1 |= ψ(w′) if and only if Mm

1 |= ψ(l ↑ |w| − i).
Hence, Mm

1 |= φ(l ↑ |w| − i) ↔ φ(w′). In the first part of the proof we have
already shown that Mm

1 |= φ(w′). Hence, we have Mm
1 |= φ(l ↑ |w| − i).

Therefore, by a straightforward induction starting with Mm
1 |= φ(l ↑ |w| − i)

for i = 0, . . . , j − 1 and by making use of (⋆) we obtain Mm
1 |= φ(w′ ⌢ (l ↑ |w|))

for all w′ ∈ N∗. In particular, we have Mm
1 |= φ(l).

Lemma 3.13. Let m ≥ 2, then Mm
1 ̸|= Ix↷mA(x).

Proof. We have Mm
1 |= A(w) for all w ∈ N∗, hence in particular

Mm
1 |= A(cons(x1, . . . , xj−1;nil)) for j = 1, . . . ,m.

Now we consider the induction step. Let l ∈ Mm
1 (list) and n1, . . . , nm ∈ N. If

l ∈ N∗, then by the above we have

(cons(n1, . . . , nm; l))
Mm

1 ∈ N∗ ⊆ AM
m
1 .

Hence, Mm
1 |= A(X) → A(cons(n1, . . . , nm; l)). For l ∈ N we show the contrapos-

itive of the induction step. Suppose first that (n1, . . . , nm) ⌢ l /∈ AM
m
1 . Hence,

we have (n1, . . . , nk)⌢ l = Nk for some k ∈ N and m | k. Thus, l = Nk+m that is
l /∈ AM

m
1 . Hence, Mm

1 |= A(x) → A(cons(x1, . . . , xm;X)). However, we also have
N0 ̸∈ AM

m
1 because wN0 = ε and kN0 = 0. Hence, Mm

1 ̸|= Ix↷mA(x).

Proof of Proposition 3.6. An immediate consequence of Lemmas 3.9 and 3.12, and
Lemma 3.13.
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So far we have shown that simulating quantifier-free m+1-step induction over
lists with m-step induction, is not possible when induction formulas are quantifier-
free. The simulation of big-step induction in Lemma 3.3 by one-step induction
makes use of universal quantifiers and conjunction. This gives rise to the question
whether the use of conjunction is necessary. We conjecture that it is necessary in
the following sense. By Clause(L) we denote the set of all clauses (disjunctions of
atoms and their negation) over the language L.

Conjecture 3.14. Let m ≥ 2, then

T0 +
⋃

1≤j<m
∀1Clause(LA)-IND↷j ̸⊢ Ix↷mA(x).

This conjecture is particularly interesting for the methods presented in [RV19,
HHK+20, HHKV21]. As shown in [HV23, Vie22] these methods carry out induc-
tion on literals and clauses. However, the results in [HV23, Vie22] are formulated
for induction over natural numbers and need to be adapted to the case for induc-
tion over lists and other recursive datatypes. A positive answer to the conjecture
above together with analogues of the results [HV23, Vie22] would provide a for-
mal justification for the necessity to implement more powerful induction rules
that handle conjunction and quantification such as described in [HHKV21]. As a
byproduct, the formulas IX↷mA(X) withm ≥ 1 form a set of benchmark problems
of increasing difficulty for automated theorem provers.

The above shows that mechanizing induction on lists is more complicated than
induction on natural numbers in the sense that a reduction of big-step induction to
one-step induction requires induction formulas with a higher quantifier-complexity.
In the following we will consider lists with a concatenation operation and we will
show that big-step induction does not prove the right cancellation of concatenation.

4 Right cancellation of list concatenation

In the previous section we have shown that quantifier-free (m + 1)-big step in-
duction is strictly stronger than quantifier-free m-step induction, but not stronger
than ∀1 induction. In this section we show that big-step quantifier-free induction is
in general strictly weaker than ∀1 induction. We will prove this result by showing
that the right cancellation property of the append operation on lists can not be
proved with quantifier-free big-step induction on lists. This result is of particular
interest for the automation of proof by mathematical induction, since it implies
the necessity to work with induction rules that exceed the power quantifier-free
big-step induction to handle comparatively basic properties such as the right can-
cellation of list concatenation.
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In the following we will work with a language that extends the base language
of lists L0 by an infix symbol for the concatenation of lists. We will work with the
usual left-recursive definition of concatenation.

Definition 4.1. The infix function symbol · ⌢ · : list × list → list represents the
append operation on lists. We define the language L1 to be L0 ∪ {⌢}. The theory
T1 extends the base theory of lists T0 by the following axioms

nil ⌢ Y = Y, (L1.1)
cons(x,X)⌢ Y = cons(x,X ⌢ Y ). (L1.2)

In the following lemmas we prove several properties about lists, and in partic-
ular the concatenation operation, using increasingly powerful induction principles.
We start by proving some simple properties with quantifier-free induction.

Lemma 4.2. The theory T1 +Open(L1)-IND proves the following formulas

(i) X ⌢ nil = X,

(ii) X ⌢ (Y ⌢ Z) = (X ⌢ Y )⌢ Z.

Proof. For both formulas we use a straightforward induction on X and making
use of (L1.1), (L1.2).

We prove the next property, the right cancellation for single-element lists, using
simultaneous induction on two variables.

Definition 4.3. Let φ(X,Y, z⃗) be a formula, then the formula IX,Y φ is given by(
(∀X)φ(X,nil , z⃗) ∧ (∀Y )φ(nil , Y, z⃗)

∧ (∀X)(∀Y )(∀x)(∀y)(φ(X,Y, z⃗) → φ(cons(x,X), cons(y, Y ), z⃗))

)
→ (∀X)(∀Y )φ(X,Y, z⃗).

Let Γ be a set of formulas, then the theory Γ-DIND is axiomatized by the sentences
(∀z⃗)IX,Y φ(X,Y, z⃗) with φ(X,Y, z⃗) ∈ Γ.

Lemma 4.4. T1 +Open(L1)-DIND proves

Y ⌢ cons(x,nil) = Z ⌢ cons(x,nil) → Y = Z.

Proof. We proceed by induction on Y and Z simultaneously. We consider only
one of the two base cases, since the other one is symmetric. For the base case
Y = nil we assume nil ⌢ cons(x,nil) = Z ⌢ cons(x,nil) and we have to show
that Z = nil . First of all, by (L1.1) we obtain cons(x,nil) = Z ⌢ cons(x,nil). By
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Lemma 3.2 we can consider two cases. If Z = nil , then we are done. Otherwise,
there are z′ and Z ′ such that Z = cons(z′, Z ′). Thus

cons(x,nil) = cons(z′, Z ′)⌢ cons(x,nil)

=(L1.2) cons(z
′, Z ′ ⌢ cons(x,nil)).

Therefore, by (L0.2) we have in particular nil = Z ′ ⌢ cons(x,nil). We apply
Lemma 3.2 and consider two cases. If Z ′ = nil , then nil = nil ⌢ cons(x,nil) =
cons(x,nil), which contradicts (L0.1). Otherwise, there are z′′ and Z ′′ such that
Z ′ = cons(z′′, Z ′′), then, by (L1.2), nil = cons(z′′, Z ′′ ⌢ cons(x,nil)), which
contradicts (L0.1). For the induction step assume Y ⌢ cons(x,nil) = Z ⌢
cons(x,nil) → Y = Z and cons(y, Y )⌢ cons(x,nil) = cons(z, Z)⌢ cons(x,nil).
Then by (L1.2) and (L0.2) we obtain y = z and

Y ⌢ cons(x,nil) = Z ⌢ cons(x,nil).

By the induction hypothesis we obtain Y = Z, thus, cons(y, Y ) = cons(z, Z).

Observe that double induction is contained within induction on ∀1 formulas
when working modulo case analysis CA given by

(∀X)
(
X = nil ∨ (∃X ′)(∃x′)X = cons(x′, X ′)

)
.

Lemma 4.5. CA+ ∀1(L)-IND ⊢ Open(L)-DIND.

Proof. Let φ(X,Y, z⃗) be a quantifier-free L formula. Let X,Y, z⃗ be fixed and
assume (∀X)φ(X,nil , z⃗), (∀Y )φ(nil , Y, z⃗), and

(∀X)(∀Y )(∀x)(∀y)(φ(X,Y, z⃗) → φ(cons(x,X), cons(y, Y ), z⃗)).

We proceed by induction on X in (∀Y )φ(X,Y, z⃗). The base case follows immedi-
ately from the assumptions. For the step case assume (∀Y )φ(X,Y, z⃗) and let Y
be fixed. By CA we can consider two cases. If Y = nil , then we are done by the
assumption. Otherwise, there are y′ and Y ′ such that Y = cons(y′, Y ′). By the
induction hypothesis, we obtain φ(X,Y ′, z⃗). Hence, by the third assumptions, we
have φ(cons(x,X), cons(y′, Y ′), z⃗), that is, φ(cons(x,X), Y, z⃗).

Using induction on a ∀1 formula, we can straightforwardly prove the right
cancellation of the append operation for arbitrary lists.

Lemma 4.6. The theory T1 + ∀1(L1)-IND proves

Y ⌢ X = Z ⌢ X → Y = Z.
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Proof. We proceed by induction on X in the formula

(∀Y )(∀Z)(Y ⌢ X = Z ⌢ X → Y = Z).

For the base case, let Y and Z be arbitrary and assume Y ⌢ nil = Z ⌢ nil . By
Lemma 4.2 we readily obtain Y = Z. For the step case we assume

(∀Y )(∀Z)Y ⌢ X = Z ⌢ X → Y = Z.

and Y ⌢ cons(x,X) = Z ⌢ cons(x,X). By (L1.1), (L1.2), and Lemma 4.2 we
obtain

(Y ⌢ cons(x,nil))⌢ X = (Z ⌢ cons(x,nil))⌢ X.

By the induction hypothesis we obtain Y ⌢ cons(x,nil) = Z ⌢ cons(x,nil).
Hence, by Lemmas 4.4 and 4.5 we obtain Y = Z.

In the remainder of this section we will show that right cancellation of append
cannot be proved by quantifier-free big-step induction on lists.

Theorem 4.7.

T1 +
⋃
m∈N

Open(L1)-IND↷m+1 ̸⊢ Y ⌢ X = X → Y = nil .

We proceed as usual by constructing a structure that satisfies the base theory
of lists with append together with quantifier-free induction for lists, but which
contains elements l1, l2 such that l1 ⌢ l2 = l2 and l1 ̸= ε. Since the concatenation
of transfinite sequences of length greater or equal to ω does not have the right
cancellation property, as for example a ⌢ aω = aω, it seems natural to use
concatenation as an interpretation of the append symbol ⌢.

In Section 3 we have already mentioned that, in order to construct a model of
T0+Open(L0)-IND we have to avoid transfinite sequences λ such that λ = w ⌢ λ
for some w ∈ N∗, cf. Lemma 3.2. However, we may introduce sequences that have
a transfinitely periodic structure, such as, the sequence Nω

0 = N0 ⌢ Nω
0 of length

ω2.
In the following we define the set of elements that we will use for the construc-

tion of the model of quantifier-free big-step induction.

Definition 4.8. The structure M2 interprets the sort i as the set N and the sort
list as the set L given by{

⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2
}
.

Furthermore, the structure M2 interprets the non-logical symbols as follows

nilM2 := ε,

consM2(n, l) := n ⌢ l,

l1 ⌢
M2 l2 := l1 ⌢ l2.
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We will now first ensure that the structure M2 defined above is indeed a well-
defined L1 structure, that is, that it is closed under the functions nilM2 , consM2 ,
and ⌢M2 .

Lemma 4.9. M2 is an L1 structure.

Proof. We have to show that M2 is closed under the operations nilM2 , consM2(·, ·),
and · ⌢M2 ·. We have nilM2 = ε ∈ N∗ ⊆ L. Now let n ∈ N and l ∈ L. Let
l = ⌊(mγ)γ≤β⌋ ⌢ w with β < ω2, m ∈ N β , and w ∈ N∗. If β = 0, then
n ⌢ l = n ⌢ ε ⌢ w = n ⌢ w ∈ N∗ ⊆ L. Otherwise, if 0 < β, then for γ < β we
let

m′
γ :=

{
(n)⌢m0 if γ = 0,
mγ otherwise

Now observe that (n) ⌢ ⌊(mγ)γ<β⌋ = ⌊(m′
γ)γ<β⌋ and clearly m′

γ ∈ N , for all
γ < β. Hence, consM2(n, l) ∈ L. Now let l1, l2 ∈ L and consider l1 ⌢M2 l2. If
l1 ∈ N∗, then we use an analogous argument as above. If l2 ∈ N∗, then we clearly
have l1 ⌢ l2 ∈ L. If l1 and l2 are non-standard, then for i = 1, 2 there are αi < ω2,
ai ∈ Nαi , wi ∈ N∗ such that li = ⌊ai⌋ ⌢ wi. Moreover, there exists δ ≤ α2 and
w′ ⌢ Nk ∈ N such that 1+δ = α2 and l2 = w′ ⌢ Nk ⌢ ⌊(a2,1+γ)γ<δ⌋. Therefore,
we have

l1 ⌢ l2 = ⌊a1⌋⌢ (w1 ⌢ w′ ⌢ Nk)⌢ ⌊(a2,1+γ)γ<δ⌋⌢ w2.

Since w1 ⌢ w′ ⌢ Nk ∈ N and α1 + α2 < ω2 we have l1 ⌢ l2 ∈ L.

Next we show that M2 satisfies the basic axioms of the list constructors nil
and cons, as well as those of the append symbol.

Lemma 4.10. M2 |= T1.

Proof. Let n ∈ N and l ∈ L, then, since every element of N has length ω, there
is some ordinal α < ω3 such that l ∈ Nα. Hence, consM2(n, l) ∈ N1+α. Therefore
consM2(n, l) ̸= nilM2 = ε = ∅. Thus M2 |= (L0.1). Now let n1, n2 ∈ N and
l1, l2 ∈ L and assume that n1 ⌢ l1 = n2 ⌢ l2. For i = 1, 2, let αi < ω3 such
that li ∈ Nαi . We thus have 1 + α1 = 1 + α2 which implies α1 = α2. Therefore,
n1 = (n1 ⌢ l1)0 = (n2 ⌢ l2)0 = n2. Let γ < α1, then l1,γ = (n1 ⌢ l1)1+γ =
(n2 ⌢ l2)1+γ = l2,γ . Thus, l1 = l2. Hence M2 |= (L0.2). Now let l ∈ L. We have
nilM2 ⌢ l = ε ⌢ l = l. Hence, M2 |= (L1.1). Now let n ∈ N, l, l′ ∈ L. Then we
have

consM2(n, l)⌢M2 l′ = ((n)⌢ l)⌢ l′ = (n)⌢ (l ⌢ l′) = consM2(n, l ⌢M2 l′).

Thus, M2 |= (L1.2).
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Since the domain of M2 interprets the sort of lists as transfinite sequences
and the append operation as the concatenation of transfinite sequences, we can
decompose list terms as follows.

Lemma 4.11. Let t(X, y⃗) be a L1 list-term and b⃗ elements of M2, then there exist
n ∈ N and l0, . . . , ln ∈ L such that

M2 |= t(X, b⃗) = l0 ⌢ X ⌢ l1 ⌢ · · ·⌢ ln−1 ⌢ X ⌢ ln.

Proof. We proceed by induction on the structure of the term t. If t is nil , then
M2 |= t = ε, and thus we are done. If t is the variable X, then we are done by
letting n = 0 and l0 = ε ∈ N0. If t is of the form cons(u, t′), then M2 |= u(⃗b) = k,
for some k ∈ N. Hence we apply the induction hypothesis in order to obtain n′ ∈ N
and l′0, . . . , l

′
n′ ∈ L such that M2 |= t′(X, b⃗) = l′0 ⌢ X ⌢ · · · ⌢ l′n′−1 ⌢ X ⌢ l′n′ .

Hence,
M2 |= t(X, b⃗) = (k)⌢ l′0 ⌢ X ⌢ · · ·⌢ l′n′−1 ⌢ X ⌢ l′n′ .

Thus, we let n = n′ and l0 = (k)⌢ l′0 and li = l′i for 1 ≤ i ≤ n. If t is of the form
t1 ⌢ t2, then simply apply the induction hypothesis to t1 and t2.

Equational predicates over M2 in one variable stabilize eventually in a similar
way to Lemma 3.11.

Lemma 4.12. Let E(X) be an L1(M2) equation such that M2 ̸|= E(X), then
there exists N ∈ N such that M2 ̸|= E((n)⌢ l) for all n ≥ N and l ∈ L.

Proof. Let E(X) be t1(X) = t2(X), then by Lemma 4.11 for i = 1, 2 there exist
ni ∈ N and li0, . . . , lini

∈ L such that

M2 |= ti = li0 ⌢ X ⌢ · · ·⌢ lini−1 ⌢ X ⌢ lini
.

By the symmetry of equality we can assume n1 ≤ n2 without loss of generality.
Since M2 ̸|= E(X) we either have n1 ̸= n2 or l1i ̸= l2i for some i ∈ {0, . . . , n1}. We
start by assuming that l1i = l2i for i = 0, . . . , n1 and n1 < n2. Then by the left
cancellation of ⌢ we obtain

M2 |= E(X) ↔ ε = X ⌢ l2n1+1 ⌢ · · ·⌢ l2n2−1 ⌢ X ⌢ l2n2
.

Hence, we have M2 ̸|= E((n) ⌢ l), for all n ∈ N and l ∈ L. So in this case it
suffices to take N = 0. Now consider the case where there exists j ∈ {0, . . . , n1}
such that l1j ̸= l2j and let j0 ∈ {0, . . . , n1} be the least such number. There are
sequences l, l1′j0 and l2′j0 such that lij0 = l ⌢ li′j0 for i = 1, 2 and either |l1′j0 | = 0,
|l2′j0 | ≥ 1, or |l1′j0 | ≥ 1, |l2′j0 | = 0, or |l1′j0 | ≥ 1, |l2′j0 | ≥ 1 and (l1

′
j0
)0 ̸= (l2

′
j0
)0. Hence, by

left cancellation of concatenation, we obtain

M2 |= E(X) ↔ l1′j0 ⌢ X ⌢ · · ·⌢ l1n1−1 ⌢ X ⌢ ln1 =

l2′j0 ⌢ X ⌢ · · ·⌢ l2n2−1 ⌢ X ⌢ ln2 .
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If l1′j0 = ε and l2
′
j0

̸= ε, then for n ̸= (l2j0)0, we have M2 ̸|= E((n) ⌢ l) for all
l ∈ L. So in this case we take N = (l2j0)0 + 1 The case where l1′j0 ̸= ε and l2

′
j0

= ε

is symmetric. Finally, in the case that l1′j0 , l
2′
j0

̸= ε with (l1
′
j0
)0 ̸= (l2

′
j0
)0, we trivially

have M2 ̸|= E(l) for all l ∈ L. So it suffices to take N = 0.

As an immediate consequence of the previous lemma, we obtain the following
result, which essentially says that for a non-standard element λ a list-equation
E(X) can eventually be stabilized for predecessors of λ.

Lemma 4.13. Let E(X) be an L1(M2) equation such that M2 ̸|= E(X) and
λ ∈ L \ N∗. Then there exists N ∈ N such that M2 ̸|= E(λ ↑ n) for all n ≥ N .

Proof. First by applying Lemma 4.12 we obtain m0 such that M ̸|= E((m) ⌢ l)
for all m ≥ m0 and l ∈ L. Since λ ̸∈ N∗, there clearly is n0 ∈ N such that
λ ↑ n0 = Nm0 ⌢ λ′ for some λ′ ∈ L. Since (λ ↑ n0 + k)0 = m0 + k ≥ m0 for
k ∈ N, we have M2 ̸|= E(λ ↑ n) for all n ≥ n0.

The previous two lemmas show that the truth value of formulas in M2 on non-
standard elements eventually synchronizes with that on standard elements, when
considering sufficiently distant predecessors.

Lemma 4.14. Let φ(X) be an open L1(M2) formula and λ ∈ L, then there exists
n0 ∈ N such that

M2 |= φ(λ ↑ n) ↔ φ((n)),

for all n ≥ n0.

Proof. Clearly, it suffices to consider the list-equations of φ, since the i-equations
do not depend on the variable X. Let E1(X), . . . , Ek(X) be the atoms of φ with
M2 ̸|= Ei(X), for i = 1, . . . , k. Then by Lemmas 4.12 and 4.13 there is n0 ∈ N such
that M2 ̸|= Ei(λ ↑ n) and M2 ̸|= Ei((n)) for n ≥ n0 and i = 1, . . . , k. Since we
have M2 |= E(X) for the other list-atoms of φ, we obtain M2 |= φ(λ ↑ n) ↔ φ((n))
for n ≥ n0.

We are now ready to show that M2 satisfies open big-step induction.

Proposition 4.15. Let m ∈ N with m ≥ 1, then M2 |= Open(L1)-IND↷m.

Proof. Let φ(X) be a quantifier-free L1(M2) formula. Assume that

M2 |=
∧

i=1,...,m

φ(cons(x1, . . . , xi−1;nil)), (∗)

M2 |= φ(X) → φ(cons(x1, . . . , xm;X)). (⋆)

Let λ ∈ L. If λ ∈ N∗, then a straightforward induction making use of (∗) and (⋆)
yields M2 |= φ(λ). Now we consider the case λ /∈ N∗, that is, λ is a non-standard
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element. By Lemma 4.14 there is n0 ∈ N such that M2 |= φ(λ ↑ n) if and only if
M2 |= φ((n)) for all n ≥ n0. In particular, we thus have

M2 |= φ(λ ↑ n0 +m+ i) ↔ φ((n0 +m+ i))

for i = 0, . . . ,m − 1. Since, M2 |= φ(w) for all w ∈ N∗, we obtain M2 |= φ(λ ↑
n0 + m + i) for i = 0, . . . ,m − 1. By a straightforward induction starting with
M2 |= φ(λ ↑ n0 + m − 1), . . . , M2 |= φ(λ ↑ n0) and making use of (⋆) we
obtain M2 |= φ(w ⌢ (λ ↑ n0)) for all w ∈ N∗. Therefore, we have in particular
M2 |= φ(λ).

Proof of Theorem 4.7. Clearly, N0 ∈ L. Since Nω
0 = ⌊(N0)γ<ω⌋, we have Nω

0 ∈ L.
Now observe that N0 ⌢ Nω

0 = Nω
0 but N0 ̸= ∅. Hence, by Proposition 4.15 we

are done.

This result is of interest for automated inductive theorem proving, because it
essentially provides a lower bound on the power necessary for the proof of a rather
simple yet practically relevant property about the important datatype of lists.

The unprovability of right cancellation of concatenation is a first step towards a
classification of the inductive power needed to prove certain practically interesting
properties of finite Lisp-like lists. Theorem 4.7 as well as the auxiliary results of
this section give rise to many related questions and conjectures that we will briefly
discuss in the following.

We conjecture that even quantifier-free simultaneous induction on several vari-
ables with big-steps does not prove right cancellation of the concatenation opera-
tion. Let x⃗ = (x1, . . . , xn) be a finite sequence and i ∈ N such that 1 ≤ i ≤ n, then
by x⃗<i we denote the sequence (x1, . . . , xi−1). Similarly, x⃗>i denotes the sequence
(xi+1, . . . , xn).

Definition 4.16. Let X⃗ = (X1, . . . , Xm) be pairwise distinct variables with m ≥ 1,
p⃗ = (p1, . . . , pm) a sequence of non-zero natural numbers, and φ(X⃗, z⃗) a formula.
The multivariate big-step list induction axiom I list

X⃗↷p⃗
φ for φ is given by


m∧
i=1

pi∧
j=1

(∀X⃗<i)(∀X⃗>i)(∀x1, . . . , xj−1)φ(X⃗<i, cons(x1, . . . , xj−1;nil), X⃗>i, z⃗)

∧(∀X⃗)(∀x⃗p1). . . (∀x⃗pm)
(
φ(X⃗, z⃗) → φ(cons(x⃗p1 ;X1), . . . , cons(x⃗

pm ;Xm), z⃗)
)


→ (∀X⃗)φ(X⃗).

where the x⃗pi with i ∈ {1, . . . ,m} are vectors of variables of sort i whose elements
are all pairwise distinct. Let Φ be a set of formulas, then theory Φ-INDlist

↗↷ is
axiomatized by I list

X⃗↷p⃗
φ with φ(X⃗, z⃗) ∈ Φ and X⃗, p⃗ as above.
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Conjecture 4.17. T1 +Open(L1)-INDlist
↗↷ ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z.

A positive answer to this question would thus greatly improve upon our Theo-
rem 4.7. A related question of interest is whether single-element right cancellation
can be proven by quantifier-free big-step induction in one variable.

The subject of AITP mainly focuses on the mechanization of induction in gen-
eral, rather than on the mechanization of individual theories. Nevertheless, the
theories of lists with concatenation considered in this section are of some practical
relevance. Hence, it may be valuable to investigate their mechanization separately.
Because of the homomorphic relation between natural numbers with addition and
lists with concatenation, it could be especially interesting to investigate whether
simple theories of lists such as T1 + ∀1(L1)-IND have finite axiomatizations anal-
ogous to the one shown in [Sho58] for natural numbers with addition.

Finally, let us observe that as an immediate consequence of Proposition 4.15 we
obtain the unprovability of right-decomposition of list by open big-step induction.

Corollary 4.18. T1 +
⋃
m≥1Open(L1)-IND↷m does not prove

X = nil ∨ (∃x′)(∃X ′)X = X ′ ⌢ cons(x′,nil).

Proof. Consider the element N0 ∈ M2(list) and observe that N0 ̸= nil but since
|N0| = ω, we cannot express N0 as λ ⌢ (n) with λ ∈ N≤ω and n ∈ N. Now, the
claim follows from Proposition 4.15.

Clearly, the formula X = nil ∨ (∃x′)(∃X ′)X = X ′ ⌢ cons(x′,nil) is provable
by induction on the formula itself, that is, by ∃1 induction. This gives rise to the
question whether right-decomposition can be proved by ∀1 induction and more
generally to the more general question how ∃1 induction and ∀1 induction over
lists with concatenation are related. This question is relevant for AITP, since
there are systems such as [KP13] that are based on ∃1 induction [HV22] and
systems such as [Cru17] that are based on ∀1 induction [Vie22, Chapter 5]. We
plan to investigate this question separately in the future.

5 Conclusion

In this article we have shown two main results about induction for lists. Firstly,
in Section 3 we have shown that quantifier-free (m + 1)-step induction can in
general not be simulated with quantifier-free m-step induction. In particular, this
result thus renders impossible a reductive implementation of quantifier-free big-
step induction in AITP systems with an induction mechanism based on quantifier-
free induction. This observation may be relevant for future extensions of systems
based on quantifier-free one-step induction mechanism, such as the AITP system
described in [RV19, Section 3.2]. The idea is that whenever an induction principle

22



can be reduced to a simpler one, then for the sake of soundness one should consider
the reduction.

The second main result of this article, shown in Section 4, is the unprovabil-
ity of right cancellation of the concatenation for lists by quantifier-free big-step
induction. Thus automated inductive theorem provers have to implement a com-
paratively strong induction mechanism in order to the prove seemingly simple
property of right cancellation of concatenation.

In the light of the results of Section 3, a natural choice would be to imple-
ment an induction principle that can handle at least ∀1 induction formulas with
conjunction. Such an induction principle permits a reductive implementation of
∀1 big-step induction. An example of a system implementing such an induction
mechanism is the one described in [Cru17] and analyzed in [Vie22, Chapter 5].

One direction for future research is to carry out similar investigations focusing
on other datatypes, induction principles, and properties. In principle questions
such as the one addressed in Section 4 could be considered for every problem
in benchmark suites such as [CJRS15] in order to obtain a classification of the
difficulty of the problems that complements empirical results.

Furthermore, the results in this article raise a number of questions and conjec-
tures that we would like to address in the future. In particular, we would like to
investigate Conjecture 4.17, since a positive answer, showing that quantifier-free
induction combining, both, simultaneous induction and big-step induction does
not prove right cancellation of concatenation, would significantly strengthen the
result of Section 4. Another interesting question is whether the right injectivity
of concatenation (see Lemma 4.4) can be proved with quantifier-free big-step in-
duction. Finally, the use of transfinite lists used in this article are reminiscent of
streams defined by coinduction. It could be interesting investigate to which extent
the techniques employed for the analysis of AITP systems can be transferred to
systems that automate the coinduction principle such as [LM14, EJP18].

Acknowledgements. The authors would like to thank the anonymous re-
viewer for many helpful comments that led to an improvement of the presentation
of this paper.
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