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Abstract

The notion of clause set cycle abstracts a family of methods for automated
inductive theorem proving based on the detection of cyclic dependencies be-
tween clause sets. By discerning the underlying logical features of clause set
cycles, we are able to characterize clause set cycles by a logical theory. We
make use of this characterization to provide practically relevant unprovability
results for clause set cycles that exploit different logical features.

1 Introduction

The subject of automated inductive theorem proving (AITP) is a subfield of auto-
mated theorem proving, that aims at automating the process of finding proofs that
involve mathematical induction. The most prominent application of automated
inductive theorem proving is the formal verification of hardware and software.
Another field of application of automated inductive theorem proving is the for-
malization of mathematical statements, where AITP systems assist humans in
formalizing statements by discharging lemmas automatically, suggest inductions
[Nagl19|, or explore the theory [JRSC14] [VJ15].

Finding a proof by mathematical induction essentially amounts to finding suit-
able induction formulas [HW18]. This is a challenging task, because induction for-
mulas have in general a higher syntactic complexity than the formula one wants to
prove. This phenomenon is commonly known as the non-analyticity of induction
formulas and can for example manifest itself in the number of free variables as
well as the number of quantifier alternations of the induction formula. Indeed,
in the language of primitive recursive arithmetic there is a sequence of quantifier-
free formulas whose proofs require induction formulas of unbounded quantifier
complexity. We refer to [HWI18| for a precise exposition of the non-analyticity
phenomenon.
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A large variety of methods for automating mathematical induction has been
developed. Methods usually differ in the type of induction formulas they generate,
the calculus they are integrated in, and other more technical parameters such as the
degree of automation, the input encoding, semantics of datatypes, and so on. For
example there are methods based on term rewriting [Red90], theory exploration
[CIRS13|, and integration into saturation-based provers [KP13| Kerl4|, [Crulbl
Crul7], [EP20], [RVI9, HHK™20].

The current methodology in automated inductive theorem proving focuses on
empirical evaluations of its methods. A given method is usually evaluated on a set
of benchmark problems such as [CJRS15]. Such an evaluation provides evidence
about the strengths and weaknesses of a method but does not result in a systematic
understanding of the underlying principles. In particular, it is difficult to compare
the methods with each other in terms of their logical strength and to provide
explanations of the failures of a given method.

The work in this article is part of a research program that addresses this
problem by formally analyzing AITP systems in order to discern their underlying
logical principles. The analysis of an AITP system typically begins by developing
a suitable abstraction. After that, the abstraction is simulated by a logical theory,
whose properties can be investigated by applying powerful results and techniques
from mathematical logic. Analyzing families of methods in the uniform formal-
ism of logic allows us not only to understand the strength of individual methods
but also to compare the methods with each other. Furthermore, approximating
an AITP system by a logical theory is a prerequisite to providing concrete and
practically meaningful unprovability results. These results are especially valuable
because they allow us to determine the logical features that a given method lacks.
Thus, negative results drive the development of new and more powerful methods.

In [HV20] the authors of this article have introduced the notion of clause set
cycle as an abstraction of the n-clause calculus [KP13| [Kerl4]—an extension of
the superposition calculus by a cycle detection mechanism. In particular, we have
shown an upper bound on the strength of clause set cycles in terms of induction for
3y formulas and moreover that this bound is optimal with respect to the quantifier
complexity of induction formulas.

In this article we continue this analysis of clause set cycles. By discerning the
logical features underlying the formalism of clause set cycles more precisely, we
are able to provide an exact characterization of refutation by a clause set cycle in
terms of a logical theory. After that, we make use of the characterization of clause
set cycles to provide practically meaningful clause sets that are not refutable by
clause set cycles, but that are refutable by induction on quantifier-free formulas.
Hence, the results in this article settle in particular Conjecture 4.7 of [HV20]. We
provide unrefutability results that exploit different logical features of clause set
cycles. This allows to recognize features that are particularly restrictive.



In Section [2] we will first introduce general notions and results about the logical
setting that we use in this article. In Section [3] we carry out the analysis of clause
set cycles which culminates in Section with two unprovability results for clause
set cycles. The two unprovability results exploit different logical features of clause
set cycles. The proof of the first unprovability result is straightforward, whereas
the second unprovability result relies on a more involved independence result in
the setting of linear arithmetic whose proof is carried out in Section [

2 Preliminary definitions

In this section we introduce some definitions that we will use throughout the
article. In Section [2.1| we will briefly describe the logical formalism. In Section [2.2
we describe the setting of formal linear arithmetic, in which we will formulate in
Section [3:3] a family of clause sets that are refutable by open induction but that
are not refutable by clause set cycles.

2.1 Formulas, theories, and clauses

We work in a setting of classical logic with equality, that is, the logic provides
besides the usual logical symbols a binary infix predicate symbol = representing
equality. A first-order language L is a set of predicate symbols and function
symbols together with their respective arities. Let S be a predicate or function
symbol, then we write S/n to indicate that S has arity n. Terms, atoms, and
formulas are constructed as usual from function symbols, variable symbols, the
logical connectives —, A, V, —, <>, and the quantifiers 3 and V. A ground term
is a term that does not contain variables. The set of all L formulas is denoted by

F(L). A sentence is a formula that does not contain free variables. Let z1,...,z,
be variables, t1,...,t, a terms, and ¢ a formula, then ¢[x1/t1,...,z,/t,] denotes
the simultaneous substitution of x; by ¢; for i = 1,...,n in .

In this article we are more interested in the axioms of a theory, rather than the
deductive closure of these axioms. Hence, we define a theory as a set axioms and
manipulate the deductive closure by means of the first-order provability relation.

Definition 1 (Theories and provability). A theory T is a set of sentences called the
axioms of T'. Let T, U be theories, then by T+ U we denote the theory axiomatized
by TUU. Let ¢ be a formula, then we write T = ¢ if ¢ is provable in first-order
logic from the axioms T. Let I' be a set of formulas, then we write T F T 4f T -~
for each v € I'. Furthermore, we write T = U, if T+ U and U - T.

Let T be a theory and ¢ a formula, then we write T' 4 ¢ to denote the theory
axiomatized by the axioms of T" and the universal closure of ¢. In this article we
will be particularly interested in formulas with a restricted number of quantifier
alternations.



Definition 2. We say that a formula ¢ (possibly containing free variables) is Vo
or Jo if ¢ is quantifier-free. Moreover, we say that a formula ¢(Z) is Vg1 (3x+1)
if it is of the form (V@)Y(Z,2) ((3Z)Y(Z,Z)) and o is J (V). Let L be a first-
order language, then by Open(L), 3x(L), and Vi(L), we denote the quantifier-free
formulas, 3;. formulas, and the Vi formulas of the language L. A theory is said to
be i (Vi) if all of its axioms are 3y, (V) ) sentences.

Clause sets are an alternative representation of V; formulas, that is preferred
by automated theorem provers because of its uniformity.

Definition 3 (Literals, clauses, clause sets). Let L be a first-order language. By
an L literal we understand an L atom or the negation of an L atom. An L clause
1s a finite set of L literals. An L clause set is a set of L clauses. Whenever the
language L is clear from the context, we simply speak of atoms, literals, clauses
and clause sets.

We will now recall some basic model-theoretic concepts.

Definition 4. Let L be a first-order language, then L structures and the first-order
satisfaction relation |= are defined as usual. Let L' C L be a first-order language
and M an L structure, then by M|, we denote the L' reduct of M. Let M be an
L structure, then we write b € M to express that b is an element of the domain
of M. Formulas and clauses are interpreted as usual. In particular, a clause is
interpreted as the universal closure of the disjunction of its literals. Let A be a set
of L formulas and L clauses, then M = A if M =6 for each 6 € A.

Let us conclude this section by introducing some notation to manipulate clauses
and clause sets.

Definition 5. By cls we denote a fixed function that assigns to every V1 sentence
@, a clause set cls(p) over the language of ¢ such that ¢ and cls(p) are logically
equivalent. Let I' be a set of V1 sentences, then we define cls(L') == |, cp cls(v).
Furthermore, by cls™' we denote a fized function that assigns to every clause set C
a V1 sentence cls™1(C) over the language of C such that C and cls~*(C) are logically
equivalent.

Lemma 6. Let € be a finite set of clause sets, then there exists a clause set C’
such that M = C' if and only if there exists C € € such that M = C.

Proof. Let € = {C1,...,Cn}, now let ¢ == \/7_, cls™*(C;). Then ¢ is logically
equivalent to a Vj sentence ¢'. Now we define C' := cls(¢)’). It is clear that
M = C' if and only if there exists ¢ € {1,...,n} such that M = C;. O



2.2 Induction and formal arithmetic

In this section we introduce some basic notions about induction and formal arith-
metic. In particular we introduce the setting of linear arithmetic in which we
formulate an unrefutability result for clause set cycles in Section [3.3
Inductive theorem provers customarily work in a many-sorted setting with a
notion of inductive datatypes encompassing at least the natural numbers, lists,
trees, and sometimes even more complicated types such as mutually recursive
datatypes. However, working in such a general setting is notationally tedious.
Moreover, all the phenomena we are interested in can already be observed over
the natural numbers. Hence, we restrict ourselves in this article to a one-sorted
setting over the natural numbers. By 0/0 and s/1 we denote function symbols
that represent the number zero and the successor function on natural numbers,
respectively. We fix some abbreviations. Let n be a natural number and ¢ a
term, then s"(¢) denotes the term s(---s(t)---) and 7 denotes the term s"(0).
~——
n times
Furthermore, let + be a binary infix function symbol representing addition of
natural numbers, then the notation n -t for the multiplication of the term ¢ by the
constant n is defined inductively by 0-t =0 and (i +1)-t =t + (i-t).

Definition 7. Let ¢(x, 2) be a formula, then I,p denotes the formula

©(0,2) A (Vo)(p(, 2) = @(s(2), 2)) = (Vo)p(z, 2).

In the definition above, we call ¢ the induction formula, x the induction variable,
and Z the induction parameters. Let I’ be a set of formulas, then the theory I'-IND
1s axiomatized by the universal closure of the formulas I,y with v € T'.

If induction is carried out on formulas without induction parameters, we speak
of parameter-free induction. A notion related to the induction scheme is that of
inductivity in a theory.

Definition 8. Let T' be a theory. A formula ¢(z,Z) is T-inductive in x if T +
©(0,2) and T + p(z,2) — p(s(x),Z). Whenever the induction variable x is clear
from the context we simply say that ¢ is inductive in T.

Let us now introduce the setting of linear arithmetic. This setting has the
advantage of being sufficiently complex to provide interesting independence results
while still having straightforward model theoretic properties.

Definition 9 (Language of linear arithmetic). The function symbol p/1 represents
the predecessor function on natural numbers and the infiz function symbol + /2
represents the addition of natural numbers. The language Lo of linear arithmetic
is {0,s,p,+}.



By N we denote the set of natural numbers as well as the Li,5 structure whose
domain is the set of natural numbers and that interprets the symbols 0, s, +
naturally and interprets the symbol p by p™(0) = 0 and pN(n + 1) = n for all
n € N. Analogously, we denote by Z the set of integers and the Ly structure
whose domain consists of the integers and that interprets all symbols naturally. In
particular, Z interprets the symbol p as the function x — x — 1. All the theories
of linear arithmetic that we will work with are extensions of the following base
theory.

Definition 10. The Lya theory B is axiomatized by the universal closure of the
formulas

s(0) # 0, (A1)
p(0) =0, (A2)
p(s(z)) = =, (A3)
r+0=uz, (A4)
z+5(y) =s(@+y). (A5)

In the following we will recall some basic properties of the theory B and its
extension by induction for quantifier-free formulas. Clearly, we have N = B and
Z = Al + A3+ A4+ A5, but Z [~ A2, since Z = p(0) = —1.

Lemma 11. (i) A1+ A2+ A3+ s(z) #0.
(1)) A3+ s(z) =s(y) > x=y.

Proof. For (i) assume that there exists x such that s(x) = 0, then by and
we have z = p(s(x)) = p(0) = 0. Thus, s(0) = 0 which contradicts For
(ii) assume s(x) = s(y), then we have p(s(z)) = p(s(y)) and by (A3)) we obtain
T =y. O

Definition 12. Let T' be an Lypa theory. We say T is sound if N = T. Fur-
thermore, T is 31-complete if N |= o implies T & o for all 31 Ly sentences
.

Lemma 13. Let t be an Lyp ground term, then there exists k € N such that
Brt=k.

Proof. Proceed by induction on the structure of the term. O
Lemma 14. Let ¢ be a quantifier-free L1 sentence, then either B - ¢ or B F —p.

Proof. By a straightforward induction on the structure of the sentence ¢. The
only interesting case is the case where ¢ is an atom t; = to. By Lemma [13| there
exist k1, ko € N such that B Ft1 =ty <> k1 = ko. If k1 = ko we apply reflexivity.

Otherwise, we apply Lemma |11} (1) repeatedly and finally we use |11} (2) O



Lemma 15. The theory B is 31-complete.

Proof. By Lemma [I4] B is also complete for quantifier-free sentences. Assume
that N = (3%)p(Z), where ¢ is quantifier-free. Then there are ny,...,ny such
that N = (71, . ..,7g). Therefore, B ¢(ng,...,7g), thus, B F (3Z)p(Z). O

Lemma 16. The theory B + Open(Lpa)-IND proves the following formulas

z=0Vr=s(p()),
z+y=y+uz,
v+ (y+2)=(@+y) +z
r+y=x+z—y==z

Proof. Routine. O

Definition 17. The theory B’ is axiomatized by (A1)-(A5)) and (B1])-(B4).
Theorem 18 ([Sho58|). B + Open(Lya)-IND = B'.

3 Analysis of clause set cycles

In this section we carry out an analysis of the formalism of refutation by a clause
set cycle. In Section[3.Iwe define clause set cycles and recall some basic properties
as well as some results from [HV20]. After that, we will provide in Section a
characterization of clause set cycles in terms of a logical theory with induction.
Finally, in Section [3.3|we will use this characterization and an independence result,
that will be proved in Section [, to obtain concrete and practically meaningful
unrefutability results for clause set cycles.

3.1 Clause set cycles

Refutation by a clause set cycle is a formalism introduced in [HV20] by the authors
of this article to describe abstractly the inductive arguments that take place in
the n-clause calculus [KP13, [KerI4|. The n-clause calculus is an extension of the
superposition calculus by a mechanism that detects cyclic dependencies between
the derived clauses. These cyclic dependencies correspond to arguments by infinite
descent and thus establish the inductive unsatisfiability of a set of clauses. The
notion of refutation by a clause set cycle abstracts the underlying superposition
calculus and the detection of the cycle in that proof system and therefore extracts
the essence of the arguments by infinite descent that may appear in refutations
by the n-clause calculus.

Since all the variables occurring in clauses are implicitly universally quantified,
a clause set does not have a free variable on which we can carry out an argument by



induction. Instead we will rely on a special constant symbol 7, on which arguments
by infinite descent will take place. This is in analogy to the special constant n that
is used by the n-clause calculus for the same purpose, see [KP13|. The constant
1 can be thought of as a Skolem constant, that is selected before a refutation is
attempted. In particular, clauses may of course contain other Skolem symbols
besides 7.

Carrying out arguments by infinite descent (or induction) only on positions
of constants is unsurprisingly very restricting (see Corollary . Since clause set
cycles are used as an abstraction of the inductive cycles of the n-clause calculus,
we did not extend the formalism to allow arguments to take place in more varied
positions. The logical characterization that we give in Section [3.2] makes consid-
ering such extensions easier. In particular, the main unprovability result of this
article, Corollary 55 does not rely on this restriction. A method that lifts this
restriction has been proposed in [EP20].

Remark 19. In the literature [KP13,|Ker14, [ HV20] a constant such as n is usually
called a parameter. In order to avoid confusion with induction parameters in the
sense of Definition 7] we will not use this designation.

Let C be a clause set possibly containing 7, then we write C(n) to indicate all
the occurrences of 7 in C. Let furthermore ¢ be a term, then C(t) denotes the
clause set obtained by replacing all the occurrences of 1 in C by t.

Definition 20 (Refutation by a clause set cycle). Let L be a first-order language.
A finite L U {n} clause set C(n) is called an L clause set cycle if it satisfies the
following conditions

C(s(n) = C(n), (C1)
() = L. (C2)

Let D(n) be an L U {n} clause set, then D(n) is refuted by an L clause set cycle
C(n) o
D(n) = C(n)- (C3)

A clause set cycle represents an argument by infinite descent in the following
sense. Suppose there is an L U {n} structure M with D(M) = N such that
M = C(n). By we have ™ > 0. Now let m € N, then we denote by
M[n — m] the L U {n} structure with the same domain as M, that interprets
all non-logical symbols except n as M, and interprets n as m. Then we have
My — n™ — 1] = C(s(n)) and by we now obtain M[n — n™ — 1] = C(n).

Hence, we obtain an finite strictly descending sequence of natural numbers m such
that M[n +— m] = C(n). This is impossible, hence M [~ C(n).



Remark 21. In the literature cycles on clause sets are usually equipped with pa-
rameters that control the offset and the descent step size and thus permit a more
flexible usage of the cycles (see for example [KP13]). In Definition we shall
consider clause set cycles with parameters inspired by the parameters found in the
cycles of the n-clause calculus. After that, we show in Proposition that such
parameters do not make the system more powerful. In particular, [HV20] uses a
slightly different notation. A refutation by a clause set cycle in [HV2()] corresponds
to a refutation by a (1,0)-clause set cycle with external offset i € N in the sense
of Definition [2]). Hence, by Proposition [26 the notion of refutation by clause set
cycle used in [HV20] is exactly as powerful as the more elegant notion of refutation
by a clause set cycle used in this article.

Clause set cycles could be integrated into a saturation-based prover by carry-
ing out the saturation process as usual and by detecting a clause set cycles among
the clauses derived so far, thus satisfying Condition with respect to the set of
generated clauses. The detection of a clause set cycle could for example make use
of the derivation relation generated by the prover in order to detect the Condi-
tions [CI] and [C2] The detection of a clause set cycle, then provides the inductive
unsatisfiability of the clauses generated and therefore ends the refutation. This is
essentially how the n-clause calculus described in [KP13| [Kerl14] operates.

Let us now consider an example of a refutation by a clause set cycle.

Definition 22. By C(n) we denote the Ly U{n} clause set

ls(B+B2) U{{n+a+a} {n# sz +2)}}.

Example 23. Intuitively, the clause set C(n) asserts the existence of an element
n, which is neither even nor odd. We will now show that C(n) is a clause set cycle.

We start by showing that C(n) satisfies Condition (C2)). Suppose that C(0) has
a model M, then we have in particular M =0 # 040 = 0. This is a contradiction,
and therefore C(0) = L.

For Condition (C1)), let M be a model of C(s(n)). Clearly, we have M =
cls(B+B2), hence we only have to show that M |=n # x4z and M = n # s(z+x).
Suppose that M |=n = d+d for some d € M, then we have M = s(n) = s(d+d).
Since M = C(s(n)), we also have M = s(n) # s(d+ d), a contradiction. Now
suppose that M |=n = s(d+d) for some d € M. Since M |= C(s(n)), we also have
M = s(n) = s(s(d+d)) = s(d) + s(d). Thus M = C(n), that is, C(s(n)) = C(n).

Hence, C(n) is a clause set cycle and therefore refutes itself.

The induction argument contained in a refutation by a clause set cycle is
peculiar in the sense that it does not take place in an explicit background theory.
Instead of a background theory clause set cycles may contain clauses free of 77 that
act as a background theory. In the example above the clause set cycle contains
the clauses cls(B + B2), that correspond to the background theory.



The cycles detected by practical methods such as the n-clause calculus differ
from clause set cycles in that they can be controlled by three parameters: An
external offset, an internal offset, and the step size of the descent. In the following
we will show that these parameters do not increase the overall strength of the
system.

Definition 24. Let L be a first-order language and j, k € N with j > 1. A finite
LU {n} clause set C(n) is called an L (j, k)-clause set cycle if

C(s" () = C(s"(n)), (CT)
Cm+k)E=L, form=0,...,j—1 (C27)

We call the parameter j the descent step size and k the internal offset. Let i € N
and D(n) an LU {n} clause set, then D(n) is refuted by the (j, k)-clause set cycle
C(n) with external offset i, if

D(si () F Cs* (), o)
D(m)):L, form=0,...,i—1. (C3>’)

Clearly, clause set cycles in the sense of Definition are exactly the (1,0)-
clause set cycles and a refutation by a clause set cycle in the sense of Definition
is a refutation by a (1,0)-clause set cycle with external offset 0.

We start by showing that (7, k)-clause set cycles with j, k € N and 7 > 1 can
be simulated by clause set cycles.

Lemma 25. Let L be a first-order language, j,k € N with j > 1, and C(n)
an L (j, k)-clause set cycle. Then there exists a clause set cycle C'(n) such that

C(s*(n)) = C'(n).

Proof. We start by eliminating the internal offset of the (j, k)-clause set cycle, by
letting C'(n) = C(s*(n)). It is clear that C’ is a (j,0)-clause set cycle. Moreover
by the definition of C' we have C(s*(n)) &= C'(n). Let C”(n) be the clause set
obtained by applying Lemma [6] to the set € = {C'(s™(n)) | m = 0,...,5 — 1}.
We will now show that C”(n) is a clause set cycle. Suppose that M | C"(0),
then M = C'(m) for some m € {0,...,7 — 1}, which is impossible and therefore
C"(0) = L. Now suppose that M = C”(s(n)). Then we have M = C'(s™1(n))
for some m € {0,...,5 —1}. If m+1 < j — 1, then C(s™*(n)) € € and therefore
M = C"(n). Otherwise we have m + 1 = j and therefore by we obtain
M = C'(n) and since C'(n) € €, we have C'(n) = C"(n). O

Now we can show that a refutation by a (j, k)-clause set cycle with internal
offset i, where 4, j, k € N with j > 1 can be reduced to a refutation by a clause set
cycle.

10



Proposition 26. Let L be a first-order language, D(n) an LU{n} clause set, and
i,7,k € N with j > 1 such that D is refuted by an L (j, k)-clause set cycle with
external offset i. Then D(n) is refuted by a clause set cycle.

Proof. Let C(n) be an L (j, k)-clause set cycle such that D(n) is refuted by C
with external offset i. By Lemmathere exists a clause set cycle C'(n) such that
C(s*(n)) = C'(n). Hence D is refuted by a (1, 0)-clause set cycle with external offset
i. In the next step we will eliminate the external offset. Let € := {D(s™(n)) | m =
0,...,i — 1} U{C’(n)} and apply Lemma [f] in order to obtain a clause set C”(n)
corresponding to the disjunction of the clause sets in €. We will now show that
C"(n) is a clause set cycle. Suppose that M = C”(0), then either M |= D(s™(n))
for some m € {0,...,i — 1} or M = C’(0). The first case is impossible because
of Condition and the second case is impossible because C'(n) is a clause set
cycle and therefore C'(0) = L. Hence we have C”(0) = L. Now suppose that
M = C"(s(n)). If M = C'(s(n)), then we have M = C’(n) because C' is a clause set
cycle and therefore M = C"(n). If M = D(s™1(n)) for some m € {0,...,i — 1},
we need to consider two cases. If m + 1 < i, then we have D(s™*1(n)) € € and
therefore M = C”(n). Otherwise we have m + 1 = i, and therefore we obtain
M E C'(n) by Condition Again we obtain M | C”(n). Hence C"(n) is a
clause set cycle. We complete the proof by observing that D(n) = C”(n), since
D(n) € €. Hence, D(n) is refuted by the clause set cycle C”(n). O

As already mentioned earlier, the notion of refutation by a clause set cycle is
a useful intermediary abstraction of the induction mechanism of a family of AITP
systems including in particular the n-clause calculus [KP13| [Ker14]. Since our goal
is to develop a uniform logical representation of methods for AITP, we thus use
the notion of refutation by a clause set cycle as a starting point to provide logical
abstractions of AITP systems such as the n-clause calculus. In particular, we
want, for a fixed language L, to provide a logical L U {n} theory T that simulates
refutation by a clause set cycle in the following sense: Let D(n) be an L U {n}
clause set that is refuted by an L clause set cycle, then 7"+ D(n) is inconsistent.
The authors of this article have shown in [HV20] that refutation by L clause set
cycles can be simulated by the theory 3 (L)-IND (see Theorem and moreover
that Open(L)-IND does not simulate refutations by a clause set cycle.

Theorem 27 ([HV20, Theorem 4.6|). There exists a language L and an L U {n}
clause set D(n) such that D(n) is refuted by an L clause set cycle, but Open(L)-IND+
D(n) is consistent.

In the following section, we will give a proof of Theorem [27] that is simpler,
shorter, and more elegant than the proof given in [HV20].
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Definition 28. Let n,m be natural numbers, then by n —m we denote the trun-
cated subtraction of m from n given by

. n—m ifn>m
n—m = o
0 otherwise

Lemma 29. B+ Open(Lpa)-INDV (Fy)(z =y+yVz=s(y+y))

Proof. By Theorem[18]it suffices to show that B’ t/ (3y)(z =y +y V& = s(y +y)).
Consider the Lpa structure M whose domain consists of the pairs of the form
(m,n) € N x Z such that m = 0 implies n € N and that interprets the non-logical
symbols as follows:

0M = (0,0),
sM((m,n)) = (m,n+1),

oM (m,n)) = {(m,n—l) if m =0,

(m,n —1) otherwise’

(m1,n1) +M (ma,n2) = (M1 +ma, n1 + na).

It is routine to verify that M = B’. Consider the element (1,0), then clearly
there is no element (m,n) of M such that (1,0) = (m,n) +™ (m,n) = (2m,2n)
or (1,0) = sM((m,n) +M (m,n)) = (2m,2n + 1). O

Proof of Theorem[27. Consider the clause set C(n). In Example we have shown

that C(n) is refuted by an Ly, clause set cycle. We will now show that Open(Ly,a )-IND-+
C(n) is consistent. We proceed indirectly and assume that Open(Ly,a)-IND +C(n)

is inconsistent. Hence B+B2+Open(La)-IND - (Jy)(n =y +y)V(Iy)(n = s(y +v)).
Thus, B + Open(Lpa)-IND - (Jy)(z =y+y Ve =s(y+y)), which contradicts
Lemma 29 O

However, empirical evidence suggests that clause set cycles are not strictly
stronger than open induction. This has given rise to the following conjecture.

Conjecture 30 (|[HV20, Conjecture 4.7]). There exists a language L and an L U
{n} clause set D(n) such that Open(L)-IND U D(n) is inconsistent, but D(n) is
not refuted by an L clause set cycle.

In the following section we will give a characterization of refutation by a clause
set cycle in terms of a logical theory. In Section we will make use of this
characterization to give a positive answer to Conjecture [30]
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3.2 Logical characterization

In the previous section we have introduced the notion of refutation by a clause
set cycle and we have shown that certain practically motivated generalizations of
refutation by a clause set cycle do not result in stronger systems. In this section
we will give a characterization of refutation by a clause set cycle in terms of a
logical theory.

We start by converting clause set cycles into formulas.

Lemma 31. Let C(n) be an L clause set cycle, then the formula —cls~1(C)[n/x]
is @-inductive. Let D(n) be an L U{n} clause set that is refuted by the clause set
cycle C(n), then —=cls™ (C) 4+ D(n) is inconsistent.

Proof. Clearly, we have M | —cls~!(C) if and only if M [ C. Hence, =
—cls71(C(0)) and —cls~1(C(n)) E —cls~1(C(s(n))). Therefore, by the complete-
ness theorem and the deduction theorem for first-order logic we have

- —els™1(C(0)),
F=els™(C(n)) — —cls™1(C(s(n))).

Thus, F =cls ™1 (C)[n/0] and + —cls~(C)[n/x] — —cls (C)[n/s(x)]. The second
part of the lemma is obvious. ]

Let C be a clause set cycle, then the formula —cls™'(C)[n/z] is the formula
that corresponds to the induction argument contained in a refutation by a clause
set cycle. Clearly, this formula is logically equivalent to an 3; formula. In the
following we will make three further important observations about this argument
by induction.

The first observation is that the formula —cls~(C)[n/x] has only one free vari-
able, that is, the variable on which the argument by induction takes places. Hence
the induction captured by clause set cycles is essentially parameter-free induc-
tion. In this article we use a notation for parameter-free induction that is inspired
by the notation used in the literature from mathematical logic on parameter-free
induction [Ada87, [KPDS8S, [Bek97bl Bek99, [CEM11].

Definition 32. Let I" be a set of formulas, then I'-IND™ is azxiomatized by the
universal closure of the formulas I, for ¢(x) € T'.

When the set of induction formulas is unrestricted, induction without param-
eters is just as powerful as induction with parameters.

Lemma 33. Let L be a first-order language, then we have

F(L)-IND = F(L)-IND".
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Proof. We only show F(L)-IND™  F(L)-IND, the other direction is trivial. Let
©(z,Z) be an L formula, x a variable, and Z a vector of variables. We let the
formula () be given by

(V2)((0,2) A (Vo) (¢ (2, 2) = @(s(2), 2)) = ¢(x, 2)).

By a straightforward quantifier shift we obtain  ( Vx)z/z(x) (V2)Ipp(z, Z). Fur-
thermore, it is straightforward to check that F ¢ (0) and F ¥ (x) — ¥ (s(z )) Hence
F Iy — (Vx)y. Therefore - Iy — (V2) 1. O

However, when we are dealing with restricted induction schemes such as 3 (L)-IND,
then its parameter-free counterpart 35 (L)-IND™ may be a weaker theory [KPDS8S].
Another remarkable property of the formula —cls ~1(C) [/ ] is its @-inductivity.
In a refutation by a clause set cycle, there is no explicit induction axiom. Instead,
whenever a clause set C(n) is shown to be a clause set cycle, it can be used in
a refutation. This is reminiscent of a Hilbert-style induction rule that allows us
to deduce cls~1(C)[n/x] if cls~1(C)[n/x] is @-inductive. The idea of Hilbert-style
inference rules and in particular of induction rules is made explicit in the following
two definitions.

Definition 34. An inference rule R is a set of tuples of the form T'/~y called the
instances of R, where T' = {y1,...,7} is a finite set of sentences and ~yy is a
sentence. Let T' be a theory, then the theory of unnested applications [T, R] of the
inference rule R over the theory T is axiomatized by

T+{e|THT,T'/p <€ R}.
Let [T, Rlo =T and [T, Rln41 = ([T, R]y, R], then we define T+ R := {J,,50[T, Rln.

Let R be an inference rule and I'/~y € R, then the intended meaning of the
rule instance I'/7p is that whenever all the sentences in I" are derived, then we can
derive vp. The instance I' /vy will also be written as

Y1 e Tn
Y0

Definition 35. Let I' be a set of formulas, then the rule T-IND® consists of the
instances of the form

(V2)(0,2)  (v2)(Va)(v(z, 2) = v(s(x), %))
(V2) (V) (x, 2) ’

with v € I' and where the variable x s called the induction variable and the vari-
ables Z are called the induction parameters. The induction rule T-INDT™ consists
of these instances of T-IND® where the induction variable is the only free variable
of the induction formula.

14



Let T be a theory and I' a set of formulas, then we can make use of Definition [§]
to reformulate the theory [T, T-IND] as follows

[T, T-IND?| =T + {¢ | ¢(x, Z) € T, ¢ is T-inductive in z}.

In other words the theory [T,T-IND®| provides induction only for T-inductive
formulas from I', whereas T+ I'-IND provides induction for all formulas in . It
is obvious that 7'+ I-IND F [T, T-IND]. However, [T,T-IND] is in general not
as strong as T+ I'-IND, see [Par72|. For further literature on induction rules, see
for example [Sho58|, [She63| [Par72, Bek97al [Jer20].

We will now make a last observation about the argument by induction con-
tained in a refutation by a clause set cycle. The previous observations show that
clause set cycles are simulated by unnested applications of the parameter-free 9;
induction rule over the theory @. A sentence derived by an induction rule is the
universal closure of an inductive formula. Hence, once a formula is derived by
an induction rule it can be instantiated freely. Similarly, a clause set cycle C(n)
acts, roughly speaking, as the lemma —cls~*(C)[n/z] of which, however, only the
instance —cls~!(C) is used. In other words, a clause set cycle allows us to derive
properties of 77 only. We will informally refer to this restriction as the instance
restriction. We can capture this restriction in the following restricted induction
rule.

Definition 36. Let I' be a set of formulas, then the rule F-IND,]R consists of the
instances of the form
(V2)7(0,2)  (V2)(Va)(v(x, 2) = 7(s(x), 2))
(V2)v(n, 2)

The rule I‘—IND?‘ consists of those instances of F-IND,? where the wnduction
variable is the only free variable of the induction formula.

, with vy €T

By combining the above observations we obtain the following proposition, that
allows us to simulate clause set cycles in a logical theory.

Proposition 37. Let D(n) be an L U {n} clause set. If D(n) is refuted by an L
clause set cycle, then [, Hl(L)—INDf_] U D(n) is inconsistent.

Proof. Since D is refuted by a clause set cycle, there exists an L clause set cycle
C(n) such that

D(n) = C(n). ()

Let @(x) = cls 1 (D)[n/z] then () is clearly logically equivalent to D(n). By
the soundness of first-order logic it thus suffices to show that

(@, 31(L)-IND] F —(n).
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Let 9(z) be an 3; formula that is logically equivalent to =cls ' (C)[n/z]. Then, by
applying the completeness theorem and the deduction theorem to @, we obtain

Fe(n) = —¢(mn). (1)

By Lemmawe know that ¢ (z) is @-inductive, and therefore we have [&f, 3; (L)—IND?‘] H
¥ (n). Hence, by considering the contrapositive of ([f|) we clearly obtain [&, 3; (L)—INDT?_} H
~p (). O

We will now show that we even have the converse and thus obtain a characteri-
zation of refutation by a clause set cycle by a logical theory. We start by observing
that finitely many inductive formulas can be fused into a single inductive formula.
Lemma 38. Let T be a theory and let pi(z,2), ..., on(x,Z) be formulas. If @;
is T-inductive in x fori=1,...,n, then ¢ := /\i:L._.n i 1s T-inductive in x.

Proof. We start by showing that T F 1(0,2). Let j € {1,...,n}, then since p;
is T-inductive in z, we have Tt ¢;(0, ) and we are done. Now let us show that
T+ ¢(x,2) = Y(s(x), 7). Workin T, assume A, ¢i(x,2), and let j € {1,...,n}.
Since ; is T-inductive in x, we have p;(x,2) = ¢;(s(x), 7). Hence we obtain
©;(s(x),Z) and therefore 1 is T-inductive in . O

This simple result is particularly interesting because fusing inductive formulas
neither introduces more induction parameters and when fusing 3; induction for-
mulas, the fused induction formula is also logically equivalent to an J; formula.
Similar techniques exist for fusing a finite number of induction axioms into a single
induction axiom [HW18 [Gen54]. However, these either introduce a new induction
parameter or increase the quantifier complexity of the resulting induction formula.

Proposition 39. Let D(n) be an LU {n} clause set. If [@, Ell(L)-INfo_] +D(n)
is inconsistent, then D(n) is refuted by an L clause set cycle.

Proof. Let p(z) = cls~}(D)[n/z], then by the completeness theorem and the
deduction theorem we obtain [& ,31(L)—IND§_] F —¢(n). By the compactness
theorem there exist 3y L formulas v (z), ..., ¥r(z) such that v; is @-inductive
fori=1,...,k and

P1(n) + -+ () F—e(n).

By Lemma , the formula ¥(z) = /\f”‘:1 ¥; is @-inductive. Moreover we have
U(n) F —p(n). Clearly, ¥ is logically equivalent to an 3; formula, hence there
exists a V; formula © that is logically equivalent to =¥. Since F ¥(0) and F
U(z) — ¥(s(x)), we have ©(0) = L and O(s(x)) = O(z). Therefore, C =
cls(©(n)) is a clause set cycle. Finally, since ¥(n) F —p(n), we obtain ¢(n) =
- (n), that is, D(n) = C(n). In other words, D is refuted by the clause set cycle
C. O
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We thus obtain a characterization of refutation by a clause set cycle in terms
of induction rules.

Theorem 40. Let D(n) be an LU{n} clause set, then D is refuted by an L clause
set cycle if and only if &, Ell(L)—INDnR*] + D(n) is inconsistent.

Proof. An immediate consequence of Propositions [37] and [39 O

Remark 41. In a refutation by a clause set cycle the constant 1 plays essentially
two roles: On the one hand, it can be thought of as a Skolem symbol and, on
the other hand, it plays the role of an induction variable. The characterization of
Theorem[{{ clarifies this situation by allowing us to distinguish between induction
variables and the Skolem symbol 1.

As a corollary we obtain Theorem 2.10 of [HV20].

Theorem 42 ([HV20, Theorem 2.10]). Let L be a first-order language and D(n)
an LU{n} clause set. If D(n) is refuted by an L clause set cycle, then 31(L)-IND+
D(n) is inconsistent.

Proof. Obvious, since 3;(L)-IND  [@, 3y (L)-INDJ . O

In the following section we will make use of the characterization of Theorem [0]
to construct clause sets that are refutable by open induction but which are not
refutable by clause set cycles. In particular the unrefutability results that we
provide exploit different logical features of clause set cycles.

3.3 Unprovability by clause set cycles

In the previous sections we have introduced the notion of refutation by a clause
set cycle for which we have shown a characterization in terms of a logical theory.
We have shown this characterization by discerning four main logical features of
refutation by a clause set cycle: the quantifier-complexity, the absence of induction
parameters, the similarity with induction rules, and the restriction on instances
of derived formulas. In this section we will make use of this characterization in
order to provide practically relevant clause sets that are not refutable by clause
set cycles, but that are refutable by induction on quantifier-free formulas. The
unrefutability results in this section will exploit different logical features of clause
set cycles. In particular we will show that restricting the instances of the conclusion
of the induction rule can be very drastic.

Let us now briefly discuss the practical applicability of the unprovability results
given in this section. The unprovability results apply to any sound (for first-order
logic) saturation prover that detects clause set cycles over the language of the ini-
tial clause set. Hence, our unprovability results apply, in particular, to all sound
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saturation provers that do not extend the language of the initial clause set and de-
tect cycles among the derived clauses such as for example the n-clause calculus (see
[KP13| [Ker14]). On the other hand systems that extend the language are also of
practical importance, since such extensions can be used to organize the refutation
process, see for example [Vorl4]. In particular, the extension of the language by
definitions can be expected to have interesting effects. However, investigating the
interaction between clause set cycles and various language extending mechanisms
would go beyond the scope of this article and should be investigated separately.
Observe, furthermore, that our setting does not rule out the presence of Skolem
symbols other than 7 in clause set cycles.

We start by slightly reformulating Theorem [40] so that we can work with for-
mulas and theories instead of clause sets.

Corollary 43. Let L be a first-order language, T a Y1 L theory, and ¢(z,¥y) a
quantifier-free L formula, then T + [&, Ell(L)—INfo_] F (3Y)e(n, y) if and only if
cls(T + (VY)—¢(n,Y)) is refuted by an L clause set cycle.

Proof. Clearly, T+, Ell(L)—INfo*] F (39)e(n, ¥) if and only if [2, Ell(L)—INfo*]—i-
cls(T + (YY) —¢(n, ¥)) is inconsistent. By Theorem [, Ell(L)—INfo_] +cls(T+
(V§)—e(n, 7)) is inconsistent if and only if cls(T + (V4)—¢(n,¥)) is refuted by an
L clause set cycle. O

In Section [3.1] we have informally observed that clause set cycles do not take
place in some explicit background theory but instead clause set cycles contain the
clauses corresponding to the background theory. In the following we will make
this informal observation more precise.

Lemma 44. Let L be a first-order language, T a Y1 L theory, U an L theory,
then
T+ [U,3(L)-INDF] = [T + U, 3,(L)-INDF].

Furthermore, T + [U,31(L)-IND®~] = [T + U, 3,(L)-IND®"].

Proof. The direction [T + U, 3, (L)-INDJ}"] T + [U, 3, (L)-IND}"] is immediate.
For the other direction let v(z) be an 3; L formula and assume that 7'+ U F ~(0)
and T+ U F ~(x) = ~(s(z)). By the compactness theorem and the deduction
theorem there exist 7,7,...,7, € T such that 7 = A}, 7 and U F 7 — ~(0)
and U b 7 — ~v(z) — v(s(x)). By straightforward propositional equivalences we
obtain

Ut (r = (@) > (7 = 4(s(2)).

Clearly, 7 is logically equivalent to a V; sentence, hence 7 — ~(z) is logically
equivalent to an 3; formula +/(z). Hence, [U, Ell(L)—INDnR*] F~/(n) and therefore

[U,31(L)-IND}"] = 7 — 4(n). Thus, T + [U,31(L)-INDF"] + ~(n). We show
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T + [U,31(L)-IND~] = [T + U, 3;(L)-INDf~] analogously, with the exception
that in the last part of the argument we have to shift the universal quantifier in
(Vz)(T — v(z)) inwards. O

Lemmal[44 allows us to move V; axioms in and out of the induction rule and thus
to consider the n-free clauses of a clause set cycle as the background theory. As an
immediate consequence of Corollary and Lemma [44] we now obtain a general
pattern to reduce unrefutability problems for clause set cycles to independence
problems.

Proposition 45. Let L be a first-order language, T a V1 L theory, and let p(z, )
be a quantifier-free L formula. Then [T, Hl(L)—INfo—] F (3Y)e(n, ¥) if and only
if the clause set cls(T + (V§)—e(n, 7)) is refuted by an L clause set cycle.

Proof. We have the following chain of equivalences:
R— _
[T,31(L)-IND," | = (3%) (0, 1),
<:>Lem.@T—|_[ @, ( ) INDR ] (317) ( g)
& [@,31(L)-IND}"]
Scor.mm cls(T + (Vy

U cls(T + (Y§)—¢(n,)) is inconsistent
7)—p(n, 7)) is refuted by an L clause set cycle. O

We can now consider some theories and formulas that will yield clause sets that
are unrefutable by clause set cycles. By the characterization of clause set cycles by
a logical theory we have discerned several restrictions of the induction principle
that corresponds to clause set cycles. In the following two subsections we will
formulate unprovability results that attack different restrictions of the induction
principle that is contained in the notion of refutation by a clause set cycle.

3.3.1 Instance restriction

In Section [3.2) we have observed that a refutation by a clause set cycle only permits
a single instance of a clause set cycle to appear in a refutation. In this section
we will formulate an unprovability result for clause set cycles that exploits this
restriction. In particular, we will base this unprovability result on a stronger
independence result that shows how drastic the instance restriction is.

Definition 46. Let f/1 be a function symbol and P/1 be a predicate symbol. The
theory P is axiomatized by the universal closure of the following formulas

0 # s(x),
s(z) =s(y) >z =y,
P(0),
P(xz) — P(s(x)).
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Definition 47. Let p(z,2) be a formula, then I ¢ denotes the formula

©(0,2) A (Vo)(p(z, 2) = @(s(2), 2)) = (1, 2).

Let T" be a set of formulas, then the theory I'-IND,, is aziomatized by the universal
closure of the formulas Iy with v € T.

We have the following independence.
Proposition 48. P + F({0,s, P, f})-IND, t/ P(f(n)).

Proof. Let M be the {0, s, P, f} structure with domain consisting of pairs (m,n) €
{0,1} X Z such that if m = 0, then n € N. Let M interpret the non-logical symbols
as follows

oM = 77M - (an)a
3M<(m7n)) = (man + 1)7

FM((m,n)) = (1,n),
PM = {(0,n) | n € N}.

It is clear that M is a {0,s, P, f} structure and moreover it is straightforward to
verify that M is a model of P. Now let us show that M = F({0,s, P, f})-IND,,.
Let 9(z, %) be a {0, s, P, f} formula, ¢ a vector of elements of M. Assume that
M | 4(0,&) and M | ¥(x,¢) — 1(s(z),¢). Since nM = 0M | we already have
M = +(n,¢) and therefore M = Il (x,7). Finally, observe that fM(nM) =
(1,0) ¢ PM hence P+ F({0,s, P, f})-IND, I P(f(n)). O

The above independence result is remarkable in the sense that it imposes no
restriction whatsoever on the induction formulas, only the conclusion of the induc-
tion axioms is restricted. Hence the result shows that this restriction is extremely
strong. As a corollary we obtain the following unrefutability result for clause set
cycles.

Corollary 49. The {0, s, P, f,n} clause set cls(P+—P(f(n))) is not refuted by a
{0,s, P, f} clause set cycle.

Proof. Suppose that cls(P+—-P(f(n))) is refuted by a {0, s, P, f} clause set cycle.
Then, by Proposition |45 we have [P,Hl({O,s,P,f})—INfo*] F P(f(n)). How-
ever, since P+ F({0,s, P, f})-IND,  [P,3:({0, s, P, f})—INDﬁ_], this contradicts
Proposition [48] O

Lemma 50. [P, Open({0, s, P, f})-IND®=] = P(f(n)).

Proof. The formula P(xz) is inductive in P. O
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Proposition 48] Corollary[49] and Lemmal[50]together show that the n-restriction
as encountered in the n-clause calculus is drastic and can result in pathological
unrefutability phenomena. On the one hand, without the n-restriction a very sim-
ple argument by induction suffices to prove P(f(n)) and on the other hand in
presence of the n-restriction even induction for all {0, s, P, f} formulas does not
allow us to prove the formula P(f(n)). However, because of this the unrefutability
result of Corollary [I9] does not tell us anything about the other restrictions of the
induction principle contained in refutations by a clause set cycle.

Hence, it would be interesting to have a similar result for linear arithmetic. In
particular we conjecture the following.

Conjecture 51. [B, Ell(LLA)—INDnR_] O+ (n+n)=m+n).

3.3.2 Induction rule and absence of parameters

In the following we will consider another unprovability result for clause set cycles
that does not make use of the instance restriction, but instead exploits the absence
of induction parameters and the induction rule. This time we work in the setting
of linear arithmetic described in Section The unprovability result developed
in this section is based on the following weak cancellation property of the addition
of natural numbers.

Definition 52. Let k,n,m € N with 0 < n < m, then we define
n-fc+m:m'x—>x:E. (Eknm)
The formula Ey , ,, is a generalization of
r+0=x+2—>2=0. (Eo,12)

Most of the upcoming Section [4] is devoted to proving the following independence
result.

Theorem 53. Let n,m,k € N with 0 <n <m, then
(B + B2+ B3) + 31 (Lpa)-IND™ I/ By

By making use of the above independence result and the characterization of
refutation by a clause set cycle in Proposition [45] we straightforwardly obtain an
unrefutability result.

Definition 54. Let k,n,m € N with 0 < n < m, then we define the clause set
gk,n,m(n) by ClS(B +B2+ B3+ _‘Ek,n,m(n))'

Corollary 55. Let k,n,m € N with 0 < n < m, then the clause set E pm(n) is
not refuted by an Lya clause set cycle.
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Proof. Assume that cls(B + B2 4+ B3 + —Ej,, (1)) is refuted by a clause set
cycle. By Proposition 45 we have [B + B2 + B3,31(LLA)—IND§'7] F Eknm(n).
Since (B + B2 + B3 + J1(Lpa)-IND®7) - [B + B2 + B3, 31(Lpa)-INDF7], this
contradicts Theorem [53] O

Let us now discuss this unprovability result. The clause sets & . () with
k,n,m € N and 0 < n < m are refuted by open induction.

Proposition 56. Open(Ly,a)-IND U &, m(n) is unsatisfiable.

Proof. Clearly, it suffices to show that B + Open(Lya)-IND F Ej,, ,(2). Work
in B + Open(Lpa)-IND and assume n -z + (m —n)k = m - z. Then by (B2),
(B3), and we obtain (m —n)k = (m —n) - . Now we use (BI]) to proceed
by case analysis on z. If x = k/ with k&' < k, then we have (m —n)(k — k') = 0.
Since m —n > 0 and k — k¥’ > 0 this contradicts Lemma . If z = k, then we
are done. If 2 = s*1(pF*1(x)), then 0 = (m — n) + p*T!(x), which contradicts

Lemma (11} (7) O

Hence, Corollary [55] together with Proposition [50] give a positive answer to
Conjecture We conclude this section with some remarks on this result and
possible improvements.

The formula Fy; 2(x) is particularly interesting, because it can be proven by
a comparatively straightforward induction.

Lemma 57. [B,Open(Lys)-IND?| - Ey ;5.

Proof. Clearly it suffices to show that the formula p(z,y) = 24+0=y+z -y =0
is B-inductive in x. It is obvious that B F ¢(0,y). Now work in B and assume
o(x,y) and s(z) +0 =y + s(z). By and we obtain s(x + 0) = s(z) =
s(z) +0 =y + s(z) = s(y + z). By Lemma[l1] we obtain = + 0 = y + z, hence by
the assumption we obtain y = 0. O

This demonstrates that clause set cycles are a very weak induction mechanism
in the sense that they are unable to deal even with simple generalizations and
therefore fail to refute relatively simple clause sets. The unprovability results in
Corollaries [I9 and [55] were constructed so that only one Skolem constant 7 appears
in the language of the considered clause sets. Consider now the clause set C given
by

ls(B)U {{n+0=v+n}} U {{v £ 0}},

where v is a Skolem constant distinct from 7. It is straightforward to check that
C(n) is an Ly U {r} clause set cycle. Hence, if clause set cycles are detected on
the languages obtained by Skolemization of the given property and its background
theory, then clause set cycles allow us to prove the property z+0=y+z — y =0
from B but fail to prove the weaker property t +0 = z + 2+ — x = 0 from B.
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Thus, clause set cycles are sensitive to the syntactic material present in a given set
clauses. In particular, Skolem constants other than n may act similar to induction
parameters.

The independence result of Theorem [53] also shows that the unrefutability
result of Corollary [55| does neither rely on the n-restriction nor on the absence of
nesting in clause set cycles. Moreover, in the light of Lemma [57] we conjecture
that the unrefutability of Corollary [55|is entirely due to the absence of induction
parameters from induction captured by clause set cycles.

Conjecture 58. Let k,n,m € N with 0 <n < m, then
B+ B2+ B3+ 31 (Lpa)-IND™ / Eg -

Furthermore, we believe that an independence similar to the one in Conjec-
ture |58 also holds for the atomic formula z+ (z+2) = (z+x) +x, which is a well-
known challenging formula for inductive theorem provers [BIS92) [Bee06, HHK™20].

Conjecture 59. B+ 31(Lia)- IND™ o+ (z+2) = (z+ ) + .

3.3.3 Nesting of the induction rule

In this section we briefly consider the role of the depth of the nesting of applications
of the induction rule. The idea underlying the results developed in this section was
brought to our attention by one of the anonymous reviewers. We will show that
a formalism that extends clause set cycles to achieve a fixed finite depth of the
nesting of the corresponding induction rule will have an unprovable clause set, that
becomes provable when the nesting depth is increased by one. Moreover, the result
remains valid in extensions of clause set cycles that allow for induction parameters.
However, the unprovability results in this section are more abstract than in the
previous sections in the sense that we work over a much stronger background
theory. We expect that providing more elementary unprovability results is not
difficult but is left as future work.
In the remainder of the section we will show the following result.

Theorem 60. Let k € N, then there is a language L and an L U {n} clause
set C(n) such that C is consistent with [@,3;(L)-IND®7],, but inconsistent with
(@, 31(L)-INDE 141

The language of Peano arithmetic Lpa consists of the function symbols 0/0,
s/1, the infix function symbols +/2, %/2, and the infix predicate symbol < /2.
Let 2 and y be distinct variables, then we write (3x < y)p as an abbreviation
for (Fz)(x <y A ¢) and similarly we write (Vo < y)p as an abbreviation for the
formula (Vx)(x <y — ¢). A Lpa formula is said to be bounded if all the quanti-
fiers occurring in it are bounded as above. The Xy, IIy and Ag formulas are the
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bounded formulas. The %,,11 (II,,4+1) formulas are the formulas of the form (3%)¢
((VZ)p) where & is a possibly empty finite sequence of variables and ¢ is a II,
(X,) formula.

We will prove the theorem above by providing a sequence of theories Ty, T, . ..
with L(T}) D Lpa, Tix1 = [Ti, 31 (L(Tp))-IND®~] such that the provably total
recursive functions of T; are exactly those of the level 3 + i of the Grzegorczyk hi-
erarchy, for i € N, and over Tj the ¥; formulas are exactly the 3;(L(7p)) formulas.
Since, the Grzegorczyk hierarchy is a strict hierarchy (see for example [Ros84]),
we obtain for each level i € N a quantifier-free L(7p) formula ¢(z,y), such that
(y)p(z,y) is provable in T;+1 but not in T;.

For a definition of the Grzegorczyk hiearchy we refer the reader to [Ros84].

Definition 61. Letn € N, then we denote by &, the n-th level of the Grzegorczyk
hiearchy.

Definition 62. The theory @ is axiomatized by the universal closure of the fol-
lowing axioms

s(x) #0, (Q1)

s(z) =s(y) =z =y, (Q2)
z#0— (Jy)(z =s(y)), (Q3)
r+0=ux, (Q4)
z+s(y) = s(z +y), (Q5)
rzx0=0, (Q6)
zxs(y) = (zxy) +a, (Q7)
r<y o ()4 —y). (Q8)

Definition 63. Let n € N, then the theory Q + X,-IND is called I3,,. The theory
IXq is also called TAy.

There is a Ag definition of the exponential function such that the theory IAg
proves the inductive properties of the definition of the exponential function, but
IAq does not prove the totality of such a definition.

Lemma 64. There is a Ag formula Exp(z,y, z) such that 1Ay proves

Exp(z,0,z) <> z =1, (E1)
Exp(z, s(y), z) < (Fv)(Exp(z,y,v) A z = v *x). (E2)

In particular 1Ay proves Exp(z,y, z1) A Exp(z,y, z2) — 21 = 2.

Proof. See [HP93, Section V.3] O
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In the following we will mainly work a theory that extends IAg by a statement
asserting the totality of the exponential function.

Definition 65. By IAy + EXP we denote the theory that extends IAg by the
aziom (Vz)(Vy)(3z)Exp(z,y, 2).

The theory IAg + EXP is also called elementary arithmetic and has various
equivalent formulations, see [Bek05, Section 1.1]|. In the following we will develop
a particular formulation with a Vi axiomatization and in which the 3; formulas of
the extended language are exactly the ¥; formulas.

Lemma 66. IAg has a 111 axiomatization.

Proof. Drop axiom [Q3] replace axiom [Q§] by the universal closure of the formulas
r<y— (Fz<y)z+zx=yand z+ 2 =y — = < y, and replace the induction
axioms I, where ¢(z, 2) is Ay by

((0,2) A (Vy < 2)(p(y, 2) = ¢(s(y), 2))) = @(z, 2).
It is routine to check that the resulting theory is equivalent to 1Ag. O

Now we will show that IAg has Ag definitions of Skolem functions of all Ag
formulas. Later on we will introduce the corresponding Skolem functions in order
to get rid of bounded quantifiers.

Definition 67 (Least number principle). Let ¢(x, Z) be a formula, then the least
number principle for ¢ is given by

(Fz)p(z, 2) = Fz)(p(z, 2) A (Vy < 2)=0(y, 2)).
Lemma 68. IAg proves the least number principle for Ay formulas.
Proof. See [HP93, Theorem 1.22]. O

Definition 69. Let ¢(7,y,2) be a Ag formula, then the formula D5.<,,(Z,y, 2)
s given by

(z Sy nple,y,2) AV < 2)=p(d,y,2") V(Y2 < y)-e(Z,y,2) Az =0).
Lemma 70. Let o(Z,y,z) be a Ag formula, then Iy proves
(1) 3z <y)p(@,y,2) = (F2 S Y)(DE.<y)p(@,y, 2) A (Z,y, 2))
(i1) (V2 <y)=¢(T,y,2) = D(g:<y)p (T 9,0)
(i11) (3'2)D(3.<y)o (T, Yy, 2),

(iv) D(Hzgy)w(f7y7 Z) —z<y.
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Proof. The formula [70] (z) follows easily from Lemma The formulas |70} (u2)
70} (1v) are straightforward. O

We will now define the way in which we Skolemize A formulas.

Definition 71. Let ¢(7,y, z) be a Ao formula, then Fi3.<,, is a function symbol
of arity |Z| + 1.

Definition 72. The formula translations ()2 and (-)" are defined mutually recur-
sively by

(0)Q =0, if 0 is quantifier-free,

(1A p2)® = w? AT,
(p1V 92)@ = Vsoz,
()
(Qy < z)p )Q (Qy < 2)p?
(By < 2)p(w,9,2)7 = (y <2767 [/ Fay<a (@ 2, (+1)
((Vy < 2wy, 2)" = (y < 2= ") W/ Fayen-o@. 2, (x)

where Q € {V,3}, V=13, 3 =V, and in Equations and the variables Z
all appear freely in the formula .

We can now obtain a suitable formulation of 1Ay + EXP.

Lemma 73. There exists a V1 axiomatized conservative extension T of IAg+EXP
such that every 31(L(T)) formula is equivalent over T to a 31 formula and every
Y1 formula is equivalent over T' to an 31(L(T)) formula.

Proof. We consider a II; formulation U of IAy. For each axiom (V&)e of U
where ¢ is Ag, T contains the axiom (V#)¢=. Furthermore, T' contains the ax-
iom Exp~[z/e(x,y)]. Finally, for each Ag formula o(Z,y, z), T contains the axiom
(D(32<)0) 712/ Fas<y),(Z,y)]. Now obtain a V; axiomatization by moving the re-
maining quantifiers outwards. By a model-theoretic argument it is straightforward
to see that the resulting theory is conservative over IAg + EXP.

It is straightforward to check that every Ay formula ¢ is equivalent in T to a
quantifier-free L(T') formula. Let ¢ be a 3; formula, then ¢ = (3%)p where ¢ is
Ag. Hence, 1) is equivalent over T to the formula (3%)¢" where ¢’ is a quantifier-
free formula that is equivalent over T' to ¢. Now let ¢ be an 3,(L(T")) formula,
then by [Hod97, pp. 51-52| there exists an equivalent unnested 3;(L(7")) formula
of the form (3Z)p where ¢ is quantifier-free. Now we simply replace atoms of

the form f(@) = y where f is either a Skolem symbol of a Ay formula or e
by the corresponding defining Ag formula. Hence, the resulting formula is a X
formula. O
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In the following we fix one such extension of IAy + EXP and call it EA.
Definition 74. Let k € N, then EA;, denotes the theory [EA, II-IND#],.

Theorem 75 ([Sie91]). The provably total recursive functions of the theory EAy
are precisely those of the class Es1i of the Grzegorczyk hierarchy.

Proof. See also the proof Corollary 7.5 of [Bek97al. O
We can reformulate the theories EA; as follows.
Lemma 76. Let k € N, then EAy = [EA, 31 (L(EA))-IND®7],.
Proof. We proceed by induction on k and show
EA;, = [EA, 3, (L(EA))-INDf],.

If K = 0, then the claim follows trivially. Now assume the claim for k, then EAj
is IIy axiomatized, hence by [Bek97a, Corollary 7.4]

EAj;1 = [EAg, I,-IND| = [EA, ©1-IND%].

Furthermore, by [Bek05l Lemma 4.6] we have
[EA, ¥1-INDP]| = [EAy, X1-INDT].

Since over EA the ¥; formulas are exactly the 3;(L(EA)) formulas, we obtain

[EA, 21-IND7] = [EA,, 3, (L(EA))-IND®].
By the induction hypothesis we readily obtain

[EA, ITo-IND®); .1 = [EA, 31 (L(EA))-IND? 1,1 O
Since & C Ex4q for all k € N, we can now provide a proof of Theorem @

Proof of Theorem[60. Let k € N, then there exists a function f : N — N such that
f € Ekya \ Ekys. Hence, there exists a ¥ formula ¢(z,y) such that f(n) = m if
and only if N = ¢(7,m) and

[EA, 31 (L(EA))-IND™ .41 F (3y)p(, y),
[EA, 31 (L(EA))-IND™;, i (Fy) oz, ).
Thus, by the construction of EA, there exists a quantifier-free L(EA) formula
¢'(z,y,Z) such that EA F ¢ + (32)¢’. Since EA is V; axiomatized we fur-

thermore have EA + [@,3;(L(EA))-INDf~] = [EA, 3;(L(EA))-IND?~]. Hence,
C = cls(EA + (Vy)(V2)—¢'(n,y, Z)) is a suitable clause set. O
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This result tells us that a mechanism that extends refutation by a clause set
cycle so as to allow at most k-fold nested 3; parameter-free induction rule is strictly
weaker than a mechanism that allows (k + 1)-fold nested applications of the 3;
parameter-free induction rule. This naturally gives rise to the question whether
we can separate a system that provides arbitrary nestings of the parameter-free
31 induction rule from a system that provides the parameter-free 3; induction
schema. The following lemma shows that we need a different approach to resolve
this question.

Lemma 77 ([Par72|). I, is Iy conservative over EA 4+ X1-INDP,

Hence the theory EA + 3;(L(EA))-IND is also Il conservative over EA +
L(EA)-IND®~. Thus the technique used above does not provide us with a clause
set that separates both systems.

Nevertheless, we conjecture that the parameter-free 9y induction schema is in
general stronger than the parameter-free 3; induction rule.

Conjecture 78. There exists a language L and an LU {n} clause set D(n) such
that 31 (L)-IND™ + D(n) is inconsistent, but (& + 31(L)-INDF™) 4+ D(n) is con-
sistent.

The results in this section are less elementary than the results of Sections
and [3.3.2 in the sense that we work over the comparatively strong EA and the
separation involves clause sets that express totality assertions. However, totality
assertions are an important class of problems for AITP systems. In this sense the
connection with the Grzegorczyk hierarchy is remarkable.

4 Idempotents in linear arithmetic

In the previous section we have introduced clause set cycles and we have given
a characterization of refutation by a clause set cycle in terms of a logical theory.
Moreover, we have shown two unrefutability results for clause set cycles. We have
shown the second unrefutability result by anticipating the independence result of
Theorem [53] for which a proof will be provided in this section. In Section 1] we
introduce some preliminary notions and we carry out some syntactic simplifications
on 3y formulas. In Section [4.2] we consider some properties of 3; formulas in the
structures N and Z. Finally, in Section we carry out the model theoretic
construction.

We work in the setting of linear arithmetic, hence, unless stated otherwise,
whenever we speak of a formula (sentence) we mean an Ly,s formula (sentence).
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4.1 Preliminaries

In this section we mainly carry out some syntactic transformations that allow us
to eliminate the function symbols p and 0 from 3; formulas. The absence of these
symbols allows us to carry out certain embeddings of structures in Sections

and 4.3

Definition 79. The theory V is axiomatized by the universal closure of the for-
mulas B B
k+z=ux+k, (Vi)

where k € N.
Lemma 80. [B, Open({0, s, +})'INDR_] FV.

Proof. The formula k + 2 = s¥(z) is B-inductive and furthermore B F s*(z) =
T+ k. Ul

We will carry out these transformations in the very weak theory B + B1 + V.
In a first step we will show that we can eliminate the symbol p from d; formulas
without increasing the quantifier complexity of 3; formulas. After that, we show
that we can moreover eliminate to a certain extent the symbol 0 from 3; formulas,
again without increasing the quantifier complexity.

In order to eliminate the symbol p from 3; formulas we proceed by replacing
all the occurrences of the symbol p by the following definition of the predecessor
function.

Definition 81. We define the formula D(x,y) by
(x=0Ay=0)Vs(y) ==.
Lemma 82. B+ Bl p(z) =y ¢ D(z,y).

Proof. We work in B + B1. Assume p(z) = y. If 2 = 0, then we have y = p(z) =
p(0) = 0, hence D(z,y). Otherwise, x = s(p(x)) and therefore z = s(p(z)) = s(y).
Now assume D(z,y). If = 0 Ay = 0, then we have p(z) = p(0) =0 =y. I
s(y) =z, then y = p(s(y)) = p(). -

We can now factor the symbol p into the axiom B1 by replacing all the occur-
rences of p by the definition of the predecessor function.

—

Lemma 83. Let (&) be an 31 Lo formula, then there exists a p-free 31 formula
' (Z) such that
B+Blk g+ ¢,
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Proof. Let ¢ be an 31(Lya) formula, then there exists an unnested 31 (L) for-
mula 1 such that - ¢ « 1, see for example [Hod97, pp. 51-52]. In particular,
the symbol p occurs in ¢ only in atoms of the form p(x) = y. Hence, we obtain
the desired formula by replacing in 1 the atomic formulas of the form p(z) =y
by D(z,y). O

In the following we will eliminate the symbol 0 to a certain extent from d;
formulas in one variable. In order to simplify the arguments we will introduce
some additional assumptions. Since we work in the context of the theory B we can
by Lemma [I3] assume without loss of generality that ground terms are numerals.
Moreover, since equality is symmetric we will assume without loss of generality
that atoms are oriented in such a way that whenever the atom contains a variable,
then the left hand side of the atom contains a variable.

Let us start by introducing the notion of components, a class of 3; formulas
that is particularly suitable to carry out the elimination of the symbol 0. Moreover,
components will also be of use for the arguments in Section

Definition 84 (Components). A component x(Z) is a formula of the form 35C,(Z, y),
where Cy is a conjunction of literals.

Lemma 85. Let p(x) be an 31 formula, then there exist p-free components x1, ..., Xn
such that B4+Bl1F ¢ < VI xi.

Proof. Apply Lemma [83|to obtain a p-free 31 formula ¢’ such that B+B1 F ¢ <
¢'. Now obtain the desired components by replacing formulas of the form ¢ — 1
and ¢ > 1 respectively by = V ¢ and (=p V ¢) A (=) V ), moving negations
inward, eliminating double negations, distributing conjunctions over disjunctions,
and moving existential quantifiers inwards over disjunctions. O

We will distinguish between three types of literals: Those where both sides
contain variables, those where only one side of the equation contains a variable
and those where none of the sides contain a variable.

Definition 86. Let [l be a literal of the form u <1 v with > € {=,#}, then | is: 11
if both u and v contain a variable, 7| if u contains a variable and v is ground, and
3 if both u and v are ground. We will combine this notation with superscript + to
indicate that the literal is positive and a superscript — to indicate that the literal
is negative. We say that a 1} literal is simple if it is of the form z = k where z is
a variable and k € N and complex otherwise.

Lemma 87. Let t be a term with Var(t) # &, then there exists a 0O-free term t'
such that B+ VEt=1t.

Proof. We proceed by induction on the structure of the term ¢. If ¢ is a variable,
then we are done by letting ¢ = t. If ¢ is of the form s(u), then Var(u) # @.
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Hence, we can apply the induction hypothesis to u in order to obtain a 0-free term
v’ such that B+V Fu =u/. Thus, B+V ¢t = s(u') and we let ¢’ = s(u'). If ¢ is of
the form p(u), then we proceed analogously. If ¢ is of the form u+ v, then we need
to consider several cases. If Var(u) = @, then Var(v) # @ and we have B u =k
for some k € N and therefore B+VFt=k+v=v+k =10 +k=sQ). If
Var(v) = &, then Var(u) # @. Hence, we can apply the induction hypothesis to
w in order to obtain a 0-free term v such that B+V  u = «’. Since Var(v) = @,
there exists k € N such that B F v = k. By multiple applications of followed
by an application of we obtain B+V Ft = u+k = s¥(u)+0 = s*(u). Hence,
t' = s¥(u) is the desired O-free term. If u and v contain variables, then by the
induction hypothesis we obtain 0-free terms «’ and v’ such that B +V F u =’
and B+ YV F v =1". Hence, t = v’ + v is the desired 0-free term. O

By Lemma [14] and Lemma it is straightforward to eliminate the symbol 0
from 11 and ]| literals. However, eliminating the symbol 0 from 1] literals needs
some more work. Let us start by observing that complex 1] atoms can be split
into several simple ones.

Lemma 88. Let u(Z) be a p-free term with Z = (z1,...,2;) and k € N, then

!
B+Bllu(?) =k« \ N z =m;.
0<my,...,m<k j=1
NEu(mi,...,m;)=k

Proof. Work in B + B1. The “if” direction is obvious. For the “only if” direction
assume u(2) = k and proceed by k-fold case analysis on the variables Z. If z; = m;

with 0 < m; < k for i = 1,...,1, then we have two cases. If u(mz,...,m;) # k,
then the claim follows trivially. Otherwise if u(m1, . ..,7;) = k, then we are done
as well since z1 = ™1 A --- A z; = Ty is a conjunct of the right side. Otherwise,
there exists an i € {1,...,1} and 2/ such that z; = s*"1z/. Then let j be the index
of the variable z; with the rightmost occurrence such that z; = sk+1z;- for some zg.
Then we have u(?) = s¥*1(u/ (21, ..., 2j_1, z}, Zj41,--.,2)) and a term u'. Hence,

by Lemma we have u(?) # k. O

Furthermore, we can eliminate simple 1|~ literals at the expense of introducing
several positive literals and an existential quantifier.

Lemma 89. Let k € N, then

k—1
B+Blkz#k <« ((Hz’)z:sk+1z'v \/ z:z’) .
1=0

31



Proof. The “if” direction is obvious. For the “only if” direction assume z # k and
proceed by k-fold case analysis on z. If z = ¢ with ¢ < k, then we are done.
The case where z = k contradicts the assumption and therefore we are done. If

z = stz for some #/, then we are done as well. O

The elimination of the 1| literals from a component x(z1,...,Z,) consists of
two majors steps. In a first step we deal with all the 1] literals except the simple
1} literals of the form x; = k with ¥ € N and i € {1,...,m}. In the second step
we will deal with the remaining 1 literals by making use of the observation that
the truth value of a literal of the form x = k with k € N becomes fixed when z is
large enough.

Let us start by defining some measures that will be used to control the first
step of the elimination procedure.

Definition 90. Let x(Z) = (Jy1)... (Jy)Cy be a component, then #(x) is the
number of occurrences of negative literals in x, #3(x) = [, #(—;mplex(X) is the
number of occurrences of complex T11 literals in x, and #rv(X) is the number of
free variables of x.

We will now provide some intermediate lemmas that allow us to eliminate a
single literal.

Lemma 91 (Elimination of 1|~ literals). Let x(¥) be a p-free component con-
taining a 1T~ literal, then there exist p-free components X}, ..., Xl such that

B+Blbx <« Vii, x; and #=(X;) <# (x) fori=1,...,n.

Proof. We first apply Lemma in order to split the atom of the 1]~ literal.
After that, we move the negations inwards and apply Lemma [89 to all the newly
introduced literals of the form z # k with k € N. Now we move the newly intro-
duced existential quantifiers outwards and possibly rename some bound variables.

Finally, we distribute conjunctions over disjunctions exhaustively. Let x1,..., X%
be the resulting components. Since we have introduced only existential quantifiers
and positive literals, we have #~(x;) < # (x)- O

Lemma 92 (Elimination of complex 1|7 literals). Let x(&) be a p-free component
containing a complex 1} literal, then there exist p-free components X}, ..., Xk
with B+ B1 = x < Vi x; such that #~(x;) = #~(x), #3(x}) = #a(x), and
#(—;mplex(x;) < #jompleX(X) fori=1,...,n.

Proof. We apply Lemmato split a complex 1] literal. Now obtain components
X1 -+ X, by distributing conjunctions over disjunctions exhaustively and moving
the existential quantifiers inwards over the disjunctions. Clearly we have B +
Bl x < Vi, x;. Observe that this operation does not introduce any negative
literals or quantifiers. Hence we have #~(x}) = #(x) and #3(x}) = #3(x) for
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i = 1,...,n. Moreover, only simple /" literals are introduced, hence we have
#(—:t)mplex(x’/i) < #:;mplex(x) fori=1,...,n. O

Lemma 93 (Elimination of simple 1|7 literals). Let x(Z) = (3y1)... (3y)Cy be a
p-free component containing a literal of the form y; = k, then there exists a p-free
component X' (x) such that = x < X', #7(X') = # (x), and #3(X') < #a(x)-

Proof. Let us assume without loss of generality that C' = y; = kAC'(Z,y1,...,u1),
where C’ is a conjunction of literals. Then, it suffices to apply the first-order
equivalence

F Qi) (yi =k AC (T Y1, Yim 1y Yis Yit s -5 Y1)
AN C,('fv Y-, Yi—1, kayiJrl? s 7yl)'

Clearly we have #~(x') = #~ (x) and #3(x’) < #3(x)- O

The following lemma combines the previous lemmas in order to accomplish the
first step of the elimination of the 1| literals.

Lemma 94. Over B+ B1+V every 31(Lya) formula ¢(x1,...,z,) is equivalent
to a disjunction of formulas of the form N ;x; = ki A (37)C(Z, ), where I C
[n] ={1,...,n} and C is a p-free O-free conjunction of literals that contains only
those variables x; such that i ¢ I.

Proof. Let x(Z) be a p-free component, then we proceed by induction on the lexico-
graphic order < on N* induced by < and show that over B+B1 the component x is
equivalent to disjunction of formulas of the form A,c; z; = k; A (3§)C(Z, ), where
I C [n] and C is a p-free disjunction of 11 and | literals that contains only those
variables x; such that i ¢ I. Let #(x) = (# (), #3(X), #omplex (X)s #rv (X)).
If x contains a 1]~ literal, then we apply Lemma in order to obtain p-free
components x4, ..., x5, such that B+ Bl F x <> /I, X, and #(x}) < #~ (%)-
Hence #(x}) < #(x) and therefore we can apply the induction hypothesis to each
of X}, ..., X}, in order to obtain the desired components. If x contains a complex
117 literal, then we apply Lemmain order to obtain p-free components x4, ...,
Xn With B + Bl x <+ Vi, x; such that #~(xj) = #(x), #3(x;) = #3(x) and

;;mplex(xg) < #Z)mplex(x), fori=1,...,n. Hence #(x}) < #(x) fori=1,...,n
and therefore we can apply the induction hypothesis to x, ..., x}, in order to
obtain the desired components. Let x(x) = (Jy1)...(Jy)Cy. If x contains a 1|
literal of the form z; = k; with i € {1,...,n}, then let x = (3F)C\(Z,¥) and
¥ = @)Cylwi/F. We have b x ¢ 7 = ki Ay Clearly, #(x') = #(x),
#3(}') = #a(x), and #L o (X) < #Enpie(X) but #ev(X) = #rv(x) — L.
Hence, we may apply the induction hypothesis to the component x’. If x con-
tains a simple 17 literal y; = k, then we apply Lemma in order to obtain
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a p-free component y'(z) such that B+ Bl F x < X', # (X)) = # (x), and
#3(x') < #3(x). Hence we have #(x’) < #(x) and therefore we can apply the
induction hypothesis in order to obtain the desired components.

Now let ¢(x1,...,2,) be an 31(Lpa) formula. By Lemma |85 the formula ¢
is equivalent over B + Bl to a disjunction of p-free components. Therefore, by
the procedure above the formula ¢ is equivalent over B + B1 to a disjunction of
formulas of the form A;.; z; = k; A (37)C(Z,7), where I C [n] and C is a p-free
disjunction of 11 and | literals containing only those variables x; such that ¢ ¢ I.
Now we apply Lemma [14] to eliminate the | literals from C' and Lemma [87] to
eliminate 0 from the 17 literals of C. O

In the next step we eliminate the remaining literals of the form x = k. This
step relies on the observation that the truth value of these literals is fixed when x
is large enough.

Proposition 95. Let p(x1,...,2,) be an 31 formula, then there exists N € N
such that o(s™ (x1),...,5N (z,)) is equivalent over B+ B1 4V to a O-free, p-free,
31 formula.

Proof. By Lemmal[94] the formula ¢ is equivalent over B+B1+V to a disjunction
of the form

where for j = 1,...,m, I; C [n] and Cj is a p-free O-free disjunction of literals
containing only those variables z; such that i ¢ I;. Let N =1+ max{k;; | j =
1,...,m,i € I;}, then o(sV (21),...,s" (x,)) is equivalent over B+B1+V to the
formula

\V  G9HC(E,5).

7j=1,....m

=2
Finally, we obtain the desired formula by moving the 3 quantifiers outwards over
the disjunction. O

4.2 Components in N and 7Z

In this section we will investigate some basic model-theoretic properties of J;
formulas in the structures N and Z.

Definition 96. Let M be an Lya structure and p(x) a formula. We say that
d € M is a solution of ¢ in M if M = ¢(d).

We will show that every p-free 3; formula with enough solutions in N|¢g ; 1} has
an infinite strictly descending sequence of solutions in Z]{()’ s,+}- Since the structure
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Nlf0,5,+} can be embedded into Z|fg s 1}, it is clear that if N|¢o 1y = (n), then
Z|{o,5,+3 = (n), for all n € N.

Let O(x1,...,x%) be an atom, then it is obvious that # is equivalent in Z to
a linear equation of the form Zle a;x; = b with integers aj,...,ax,b. Hence a
conjunction of atoms 0(x1,...,zk),...,0,(x1,..., k) is equivalent over Z to an
inhomogeneous system of linear equations of the form

AT = b, (1)

where A € Z™** and b € Z™*!. Now consider the corresponding homogeneous
system
A¥ =0. (H)

The solutions of the system form a submonoid H of Z* with pointwise addition.
Furthermore, assume that () has a particular solution i), then the set of solutions

of is given by

P)>

T={h+ig|heH}

Lemma 97. Let x(x) be a component with two solutions in Z, then for alln € N
there exists n’ € N with n’ > n such that Z = x(—n’).

Proof. Let x(wo) = (3z1)...(3z)Cy (1) with &7 = (zg,21,...,21). Let Z |
Cx(”%;)) with na) = (nio,...,n;x) and i € {1,2} such that ni g < ngp.

We start by considering the positive literals of xy. By the above the positive
literals of x are equivalent in Z to an inhomogeneous linear system

AT = b, (1)

with A € Z>*+1) and b € Z%1, where [ is the number of positive literals of .
Let us denote by Z the set of solutions of () and by H the set of solutions of the
homogeneous system. Then n(),np) € Z and therefore hy = ng) — np) € H.
Hence m - hg + n(1) € Z for all m € N.

Now consider a negative literal p(xq,...,xx) # 0 of x, where p is a linear
polynomial in the variables z, ...,z with coefficients in Z. Let ¢(m) = p((m -
ho + n(l))T), then ¢ is a linear polynomial in one variable and moreover by the
assumptions we have ¢(0) = p(n(Tl)) # 0. Hence, there clearly is at most one k € Z
such that ¢(k) = 0.

Let p1(zo,...,xk) #0, ..., pr(xo,...,xk) # 0 be all the negative literals of x,
then we let

,

my = max ({O} U U {m+1|meN,qg(m)= O}) .
i=1

Clearly, the natural number mg exists and we have Z |= Cy((m - ho + n(l))T) for

all m € N with m > mg. Since n1 9 < ngo we are done. ]
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We summarize the results of this section in the following proposition.

Proposition 98. Let o(x) be a p-free 31 formula. There exists ann € N such that
if ¢ has n solutions in N, then there exists an infinite strictly descending sequence
of integers (k;)ien with Z = @(k;) for all i € N.

Proof. Let x1, ..., X be p-free components such that - ¢ <> \/f:1 xi- Letn = k+1
and assume that ¢ has n solutions in N. Then by the pigeonhole principle there
is a component x;, with two solutions in N and therefore x;, has two solutions in
Z. Finally, we apply Lemma [97] to x;,. O

4.3 A non-standard model

In this section we construct a family of non-standard structures for the language
L1a and we make use of the results from Sections and in order to show
that these structures are models of the theory

(B + B2+ B3) + 3;(Lya)-INDF~.

Let us start by introducing some terminology about the models of this theory.
Since already the theory [B, Open(Lya)-INDf~] proves Bl and V, the models of
(B+B2+B3)+3;(Lra)-IND®~ are composed of a copy of the natural numbers—
the standard elements—and copies of the integers, which we call the non-standard
elements. The elements of the models we construct below are pairs of the form
nlml = (m,n) € N x Z such that m = 0 implies n € N. If m = 0, then the element
is a standard element, otherwise it is non-standard and belongs to the m-th copy
of the integers. We call m the type of the element and n the value of the element.
We start by defining an operation that will allow us to relate the types of the
elements.

Definition 99. The function 1: N x N = N is given by
n ifn#0
nlm:= .
m ifn=0

Definition 100. Let I € N, then the Lya structure My consist of pairs of the form
™ withn € Z, m € N and m < I such that if m =0 then n € N. Furthermore,
we let My interpret the non-logical symbols as follows

oMr — 0[0]’
My = (0 + DM for ™ e M,
n=D00  ifm= 0,
pMI<n[m]) = ( )[ ] / .
(n— 1" otherwise.
n[1m1] +MI n[2m2] _ (nl + nQ)[mﬂmg]'
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The structure My is isomorphic to the standard model N. Since we are inter-
ested in constructing non-standard structures, we will consider mainly the struc-
tures My with I > 1.

Lemma 101. Let I € N, then M; =B+ B1+B3+ V.
Proof. Routine. O

The structures M; with I € N and I > 0 have the crucial property that
Z|{sp+} can be embedded into the non-standard parts of M;. Hence the solutions
of O-free 3; formulas in Z can be transferred into the non-standard chains of Mj.

Lemma 102. Let m,I € N with 1 < m < I, then the function v, : Z — M,
n— nl™ s an embedding of Zl(sp+y into Mylgsp 1y In particular, if o(x) is a
0-free 3y formula, then Z = @(n) implies My = o(nl™).

Proof. It is routine to verify that ¢,, is an embedding of Z|{S’p’+} into M1|{5,p7+}.
The second part of the claim follows from the well-known fact that embeddings
preserve J; formulas (see for example [Hod97, Theorem 2.4.1]) O

We can now show that the structures M7 satisfy unnested applications of the
induction rule 3y (Ly,a)-INDF~,

Theorem 103. Let I > 1 and T be a sound Ly theory such that My =T, then
My = [T, 31 (L) -INDE].

Proof. Let ¢(x) be an 3; formula and assume that ¢ is T-inductive. Since T is
sound, we have N |= ¢(z). Now consider an element nl™ € M. If m = 0, then
n € N and by the observation above N = ¢(7). By the 3j-completeness of B
we have B F o(7) and therefore My = (7). Since M; = 7 = nl% we obtain
M = p(nlm).

Now assume that m > 0. By Proposition 95| there exists a O-free p-free formula
¢ and an N € N such that B +B1 4+ V F (s (z)) < ¢'(x). Hence we have
N = ¢’ and therefore by Proposition there is an infinite strictly descending
sequence of integers (k;);en such that Z = ¢'(k;) for i € N. By Lemma we
obtain M = ¢/ (kz[m]) for i € N. Hence there exists i9 € N such that k;, + N <n
and M; = ¢/ (K™), thus, My |= o((ki, + N)I)). Since My = o(z) — (s(x)),
we obtain M = @(kiy, + N + k)™ for all k € N. In particular, we have M; =
p(nlm). O

By iterating the argument above we can show that the structures M; even
satisfy nested applications of 3 (L, A)—INDR_.

Corollary 104. Let I > 1 and T be a sound Ly theory such that My =T, then
M; =T + 31 (Lpa)-INDE-.
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Proof. We proceed by induction on j to show [T, 3;(Lpa)-IND?] ;. For the base
case we have [T, 3;(Lpa)-INDT~]g = T, hence we are done. For the induction step
assume that My = [T, 31(Lpa)-IND®7]; and observe that [T, 31 (Ly,a)-INDT7); is
sound. Now obtain M; k= [T, 3;(Lya)-IND®7]; 11 by Theorem %i_?:l O

Lemma 105. M; = B2.

Proof. Clearly it suffices to show that by 1 ba = ba | by for by,be € {0,1}. The
only interesting case is by # bo, that is, 011 =1=110. [

Corollary 106. M; = (B + B2+ B3) + 3;(Lpa)-INDT~.
Proof. An immediate consequence of Lemma and Corollary O

Theorem [53]can now finally be obtained as an immediate consequence of Corol-

lary [106]

Proof of Theorem[53. By Corollary we can work with M7. Now observe that

n-kW+(m — n)k = (k) 4 ((m—n)k) = (nk+(m—n)k)) = (mk) = m- k1,

but k1 £ k0], O
Let us now consider whether some straightforward modifications of the back-

ground theory in Theorem [53] will improve the result. The following lemma shows

that we do not strengthen the result of Theorem [53| by adding any V; consequence
of (B+B2+B3) + Ell(LLA)—INDR_ to the background theory.

Lemma 107. Let L be a first-order language, T an L, Y1 theory and U a theory,
then

[T + U, 3, (L)-IND®7],, = T + [U, 3, (L)-IND®7],,, for all n € N.
Furthermore, (T 4+ U) + 3;(L)-IND®~ = T + (U + 3,(L)-INDf~).

Proof. The first part is obtained by a straightforward induction on n and applying
Lemma The second part is an immediate consequence of the first part. ]

The next natural question to ask is whether removing the formulas B2 and B3
in Theorem 53] would weaken the result. The following result shows that removing
the axiom B2 would indeed weaken the result.

Lemma 108. (B + B3) + 3;(Lpa)-INDE™ I/ B2.

Proof. By Lemma we have My = B + B3. Since ol + 0l = o112} = ol
012 = 0P = o2 + ol we obtain My = (B + B3) + 3 (Lpa)-INDF~ 1 B2 by
Corollary [104] O
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We conjecture that removing B3 from Theorem [53| would weaken the result as
well.

Conjecture 109. (B + B2) + Hl(LLA)—INDR_ ¥ B3.

We conclude this section by observing that the model-theoretic construction
developed in this section does not yield a proof of Conjecture

Lemma 110. Let I > 1, then M = 31(Lya)-IND™.
Proof. Let x(x) = (Jy1)(3y2)(3y3)0(x, y1, y2, y3) with
O(z,y1,y2,y3) =x+y1 #x +y2 Ax+ (yzs + 1) =z + (Y3 + y2).

We will show that M; p= Ix(z). We first show that My = x(nl%) for all n € N.
For this it suffices to observe nl)4+0l% = pl0l R0l 401) = il and R4 (0 4+00) =
nlo ol = [t = plo) 4 (01 + 0l1). Hence M; = 6(nl%, 00, 0l 0M). Now we
will show that My ¥~ x(n™) for n € Z and m > 0. Let k‘[lmﬂ, kgm], I € M; and
assume that

nlm] ™) o2l e, (*)
nlml 4 () 4 gy = plml ) 4 el (1)

Since m > 0, we have m | u = m for all w € Z. Hence by (ED we obtain
n+k; #n+ke. By we obtain n 41+ k1 = n+ 1+ ko, thus k; = ko. Therefore
n+ k1 =n -+ ko. Contradiction!

By the above we thus have M = x(0). Now let nl™ € M;. If m = 0, then we
have My = x((n + 1)1%) hence My = x(nl%) = x((n + 1)), If m > 0, then we
have M  x(nl™) hence M7 = x(nl™) — x((n+1)™). Thus M; ¥ Lx(z). O

On the other hand it may be interesting to observe that already unnested appli-
cation of the parameter-free induction rule for 3; formulas contain the parameter-
free induction schema for quantifier-free formulas.

Lemma 111. Let L be a language, then [@,31(L)-IND®~]  Open(L)-IND™.

Proof. Let ¢(z) be a quantifier-free formula. Let ¢ (x,y) be given by

((0) A (p(y) = ©(s(y))) = ¢().

By shifting the existential quantifier inward, it is straightforward to see that
(Vz)(3y)v(x,y) < Iryp. Moreover, we clearly have F (Jy)¥(0,y). Now work
in @ and assume ¥(z,y0). Assume furthermore ¢(0), ¢(yo) — @(s(yo)) and
o(z) — ¢(s(x)). By the assumptions we obtain ¢(x) and moreover ¢(s(z)).
Hence, we have (Jy)i(s(x),y). Therefore, - (Jy)v(x,y) — (y)v(s(x),y). Thus,
[, 31 (L)-INDR-] F (var) (3y)b (). 0
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5 Conclusion

Clause set cycles are a formalism introduced by the authors of this article in [HV20)]
for the purpose of giving an upper bound on the strength on a family of AITP
systems based on the extension of a saturation theorem prover by a cycle detection
mechanism, such as the n-clause calculus [KP13| [Kerl14]. In this article we have
extended the analysis of clause set cycles that was begun in [HV20] by providing
a logical characterization of refutation by a clause set cycle and concrete clause
sets that are not refutable by a clause set cycle but that are refuted by induction
for quantifier-free formulas.

In Section [3| we have identified several logical features of clause set cycles.
Identifying these features has enabled us to give a characterization of the notion
of refutation by a clause set cycle in terms of a logical theory. The characterization
allows us to think of clause set cycles essentially as unnested applications of the
parameter-free 4; 7 induction rule. In the light of this logical characterization we
were able to reduce the task of finding clause sets that are not refuted by a clause
set cycle to an independence problem.

Based on this characterization we have shown two unprovability results for
clause set cycles. The first result (Corollary exploits the fact that refuta-
tions by a clause set cycle only make use of n-instances of the inductive lem-
mas. In particular, we have shown that even the full induction schema subject to
the n-restriction does not prove some atoms that can already be obtained by an
unnested application of the open parameter-free induction rule. This shows that
the n-restriction is very limiting. However, our second unprovability result (Corol-
lary does not rely on the n-restriction and thus shows that AITP systems based
on clause set cycles have more limitations. In Section [f] we have developed the
underlying independence result (Theorem . This independence result shows
us that the unprovability persists even when the induction rule is nested. We
conjecture that this unprovability phenomenon is due to the absence of induction
parameters and therefore also persists when the induction rule is replaced by the
induction schema. This second unrefutability result shows that clause set cycles
fail to capture induction arguments that involve very simple generalizations.

The results in this article together with the results in [HV20] explain much
about the situation of AITP systems based on clause set cycles in the logical
landscape. We have summarized the current results as well as some conjectures in
Figure[l] The figure depicts the refutational strength of various induction systems.
The set of clause sets refuted by a system is described by an arc. The name of
the system is inscribed near the top of the corresponding arc. The systems range
over all first-order languages. The system CSC denotes refutation by a clause set
cycle and NCC denotes the n-clause calculus as described in [HV20]. The points
{8; | i = 1,2,3,4,5} represent clause sets whose positions are confirmed by the
results in this article and [HV20]. In particular e; corresponds to the clause set
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that witnesses [HV20), Corollary 5.8|, e5 corresponds to the clause set constructed
in Section[3.3.1] and e3 corresponds to the clause sets constructed in Section [3:3.2
the points e4, e5 correspond to some the clause sets mentioned in Theorem
The inclusion of Open-IND~ in [@, 3;-IND®~] is shown by Lemma m

The dashed arc corresponding to the system 31-IND™ is positioned according
to Conjecture The points {; | i« = 1,2} of Figure [l| represent clause sets
that we conjecture to be at the respective positions. In particular, the point
*1 corresponds to the clause set mentioned in Conjecture We would like to
clarify the status of the point *; and the dashed arc corresponding to the system
31-IND™, as this would contribute to the understanding of the role of induction
parameters and induction rules in automated inductive theorem proving.

Due to the recent advances in saturation-based theorem proving, the research
on automated inductive theorem proving has recently increasingly focused on the
integration of induction into saturation-based theorem provers [Crulbl [Crul7,
KP13|, Ker14, Wan17, [EP20, RV19, HHK™20|. We plan to carry out similar inves-
tigations for all these methods in order to develop a more global and unified view
of induction in saturation-based theorem proving. In particular these investiga-
tions will give rise to the analysis of the interaction of the induction principle with
various mechanisms of saturation-based provers such as Skolemization, splitting,
term orderings, and redundancy criteria.

The point %9 in Figure 1| gives rise to a more general topic that is worth
mentioning separately. On the one hand it is computationally expensive for AITP
systems to carry out even a small number of inductions, and on the other hand the
space of all possible induction formulas is very large. Hence AITP systems rely on
heuristics to find induction formulas such as restricting the overall shape of the
considered induction formulas and drawing syntactical material for induction from
the formulas generated during the proof search. For example, the n-clause calculus
as described in [KP13| [Ker14] only makes use of clause set cycles that appear as a
subset of the clauses that are generated by the underlying saturation-based system.
Such heuristics will not succeed in cases where a sufficiently non-analytic induction
is required. Our technique for analyzing AITP systems as logical theories can deal
with such heuristics only to a limited extent. For example, the notion of refutation
by a clause set cycle completely ignores the fact that the n-clause calculus draws
clause set cycles only from the generated clauses. Once the logical strength of most
inductive theorem provers is known precisely enough it will likely be necessary to
investigate the fine grained analyticity properties of the provers in order to get a
better understanding of the consequences of restricting the degree of analyticity.

Acknowledgments. We thank Emil Jefabek for pointing out to us the simi-
larity of clause set cycles with unnested induction rules. Moreover, we thank the
anonymous reviewers whose feedback helped to improve the article significantly.
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