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Abstract

We consider a typical integration of induction in saturation-based
theorem provers and investigate the effects of Skolem symbols occur-
ring in the induction formulas. In a practically relevant setting we es-
tablish a Skolem-free characterization of refutation in saturation-based
proof systems with induction. Finally, we use this characterization to
obtain unprovability results for a concrete saturation-based induction
prover.
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1 Introduction

Automated inductive theorem proving (AITP) is a branch of automated de-
duction that aims at automating the process of finding proofs that involve
mathematical induction. In first-order automated theorem proving (ATP)
we try to establish validity whereas in automated inductive theorem prov-
ing (AITP) one is usually interested to prove that a formula is true in the
standard model of some inductive type, such as natural numbers, lists, trees,
etc. By Gödel’s incompleteness theorems, truth in the standard model is
in general not semi-decidable (even worse, it is in general not even arith-
metically definable). Hence, for AITP there is a lot more freedom in the
choice of proof systems, than there is for ATP. In practice we see methods
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that make use of typical first-order induction schemata, Hilbert-style induc-
tion rules (for example [KP13, Ker14]), and even more exotic cyclic calculi
(see [Bro05, BGP12]) that can exceed the power of the first-order induction
schema [BT17, BT19].

The most prominent applications of automated inductive theorem prov-
ing are found in formal methods for software engineering. For example, the
formal verification of software relies strongly on one or another form of induc-
tion since any non-trivial program contains some form of loops or recursion.
Besides the applications in software engineering, AITP methods have appli-
cations in the formalization of mathematics. For instance, AITP methods
can be employed by proof assistants to explore a theory in order to provide
useful lemmas [JRSC14], [JDB09].

A wide variety of methods for automated inductive theorem proving have
been developed: there are methods based on recursion analysis [BM79, Ste88,
BvHH+89], proof by consistency [Com01], rippling [BSvH+93], cyclic proofs
[BGP12], extensions of saturation-based provers [BHHW86, KP13, Ker14,
Cru15, Cru17, EP20, RV19, HHK+20, Wan17], tree grammar provers [EH15],
theory exploration based provers [CJRS13], rewriting induction [Red90], en-
coding [Sch20], extensions of SMT solvers [RK15]. Many methods integrate
the induction mechanism more or less tightly within a proof system that is
well-suited for automation. Therefore, these methods exist mainly at lower
levels of abstraction, often close to an actual implementation. Such methods
are traditionally evaluated empirically on a set of benchmark problems such
as the one described by Claessen et. al. [CJRS15]. Formal explanations
backing the observations obtained by the empirical evaluation are still rare.
As of now, it is difficult to classify methods according to their strength and
to give theoretical explanations of an empirically observed failure of a given
method in a particular context.

The work in this article is part of a research program that aims at analyz-
ing methods for AITP by applying techniques and results from mathematical
logic. The purpose of this is twofold. Firstly, formal analyses allow us to
complement and to explain the empirical knowledge obtained by the practi-
cal evaluations of AITP methods. Secondly, the analyses carried out during
this program will inevitably lead to a development of the logical founda-
tions of automated inductive theorem proving. In particular, we believe that
practically relevant negative results are especially valuable in revealing the
features a method is lacking. Thus, negative results may drive the devel-
opment of new methods. Moreover, we believe that this research program
will strengthen the link between the research in automated inductive theorem
proving and mathematical logic, and therefore, may lead to cross-fertilization
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by providing interesting theoretical techniques from mathematical logic and
new problems for mathematical logic.

As part of this research program Hetzl and Wong [HW18] have given
some observations on the logical foundations of inductive theorem proving.
Vierling [Vie18] has analyzed the n-clause calculus [KP13, Ker14] resulting
in an estimate of the strength of this calculus. Building on this analysis
Hetzl and Vierling [HV20] have further abstracted the n-clause calculus and
situated this calculus with respect to some logical theories. The authors are
currently also working on an unprovability result for the n-clause calculus.

The subject of AITP has recently increasingly focused on integrating
mathematical induction in saturation-based theorem provers [KP13, Ker14,
Cru15, Cru17, Wan17, EP20, RV19, HHK+20]. In this article we propose
abstractions of these systems and investigate how Skolemization interferes
with induction in such a system. In a fairly general yet practically relevant
setting we are able to show that Skolem symbols take the role of induction
parameters. We use this insight to provide unprovability results for a family
of methods using induction for quantifier-free formulas. This allows us in
particular to obtain unprovability results for the concrete method described
in [RV19, HHK+20].

In this article we will provide a unified view of a commonly used strategy
to integrate induction into saturation-based theorem proving and concen-
trate on the role of Skolemization in these systems. To our knowledge the
interaction between induction and Skolemization has not been investigated
in the related literature. Section 2 introduces all the necessary notations
related to our logical formalism, our presentation of Skolemization, and the
arithmetic theories used in this article. We will give a precise presentation of
Skolemization, that imposes a concrete naming schema which will be partic-
ularly useful in dealing with the languages generated by saturation systems.
In Section 3 we give an abstract description of saturation-based proof sys-
tems and describe abstractly a common strategy to integrate induction in
such systems. We furthermore present a restriction of this system that gen-
eralizes a way to handle induction found in most practical saturation systems
with induction. Section 4 gives a very clear characterization of refutation in
saturation systems with an unrestricted induction rule (see Theorem 4.11)
and analyzes the effects of Skolemization on the induction. In Section 5 we
analyze the effect of Skolemization in syntactically restricted systems that
are closer to the practical methods. This section culminates in a Skolem-free
characterization of these systems (see Theorem 5.23). Finally in Section 6
we make use of the results from Section 5 to provide practically relevant
unprovability results for a family of methods using quantifier-free induction
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formulas (see Theorem 6.6) and apply this result to the concrete method
presented in [RV19, HHK+20].

2 Preliminary Definitions

In this section we settle the details of the logical formalism that we use
throughout the article. For the sake of clarity we try to adhere as much as
possible to standard terminology, but we introduce some non-standard no-
tations where it is beneficial for the presentation. In Section 2.1 we describe
our logical formalism and the related notations such as clauses. Section 2.2
introduces some definitions and well-known results related to Skolemization
and in particular the naming schema for Skolem symbols that we adopt in
this article. Finally, in Section 2.3 we recall some notions of formal arith-
metic and introduce a particular theory of formal arithmetic that will be of
use at various occasions.

2.1 Formulas, theories, and clauses

We work in a setting of classical single-sorted first-order logic with equality.
That is, besides the usual logical symbols we have a logical binary predicate
symbol = denoting equality. In the context of automated theorem proving
it is common to work in a many-sorted setting, but in order to keep the
presentation simple we only use one sort. All our definitions and results easily
generalize to the many-sorted case. A first-order language L is a countable
set of function symbols and predicate symbols with their respective arities.
Let σ be a (function or predicate) symbol, then we write σ/n to denote that σ
has arity n ∈ N. Terms are constructed from function symbols and variables.
Formulas are constructed as usual from atomic formulas, the connectives ¬,
∨, ∧, →, and the quantifiers ∃ and ∀. In order to save some parentheses we
assume the following order of precedence for the propositional connectives:
¬, ∨, ∧, →. By F(L) we denote the set of L formulas. The notions of bound
variables and free variables are defined as usual. By FV(φ) we denote the
set of free variables of a formula φ. A formula that has no free variables is
called a sentence. By (∃!y)φ(x⃗, y) we abbreviate the formula

(∃y)φ(x⃗, y) ∧ (∀y1, y2)(φ(x⃗, y1) ∧ φ(x⃗, y2) → y1 = y2).

In this article we are more interested in the axioms of a theory, rather
than the deductive closure of these axioms. Hence, we define a theory as a
set axioms and manipulate the deductive closure by means of the first-order
provability relation (see Definition 2.2).

4



Definition 2.1 (Theories). Let L be a first-order language, then a first-order
L theory T is a set of L sentences called the axioms of T .

For the sake of legibility we often present the axioms of a theory as a
list of formulas with free variables, with the intended meaning that these
formulas are universally closed. By L(T ) we denote the language of the
theory T . When no confusion arises we sometimes write T in places where
L(T ) is expected.

Definition 2.2 (Provability). Let φ be a sentence and T a theory, then we
write T ⊢ φ to denote that φ is provable in first-order logic from the axioms
of T . Let Γ be a set of sentences, then we write T ⊢ Γ to denote that T ⊢ φ
for all sentences φ ∈ Γ. Let T1 and T2 be theories, then we write T1 ≡ T2 if
T1 ⊢ T2 and T2 ⊢ T1.

Let φ(x⃗) be a formula and T a theory, then in order to ease the notation
we will sometimes write T ⊢ φ(x⃗) in place of T ⊢ (∀x⃗)φ(x⃗).

Definition 2.3 (Conservativity). Let T1 and T2 be theories, and Γ a set of
formulas. We say that T1 is Γ-conservative over T2 (in symbols T1 ⊑Γ T2),
if, for all φ ∈ Γ, T1 ⊢ φ implies T2 ⊢ φ. We write T1 ≡Γ T2 if T1 ⊑Γ T2 and
T1 ⊒Γ T2. If Γ = F(L) for some first-order language L, then we may simply
write T1 ⊑L T2 for T1 ⊑F(L) T2.

Automated theorem provers—in particular saturation systems—usually
do not operate directly on formulas but instead operate on clauses and clause
sets (see Section 3).

Definition 2.4 (Literals and clauses). Let L be a first-order language. An
L literal is an L atom or the negation thereof. An L clause is a finite set of
L literals. An L clause set is a set of clauses. By □ we denote the empty
clause. Let C and D be clauses, then we write C ∨ D for the union of the
clauses C and D. Let C be a clause set and D a clause, the we write C ∨D
to denote the clause set {C ∨ D | C ∈ C}. Furthermore, we write L(C) to
denote the language of C, that is, the set of non-logical symbols that occur in
clauses of C.

Whenever the language L is clear from the context or irrelevant, we
simply speak of clauses and clause sets instead of L clauses and L clause
sets.

We will now recall basic some model-theoretic concepts and notations.
Let L be a language, then an L structure is a pair M = (D, I), where D is a
non-empty set and I is an interpretation. The interpretation I is a function
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that assigns to each symbol σ/k ∈ L an interpretation σI such that if σ
is a predicate symbol, then σI ⊆ Dk and if σ is a function symbol, then
σI : Dk → D. Let φ(x1, . . . , xn) be an L formula and d1, . . . , dn ∈ D, then
we write M, {xi 7→ di | i = 1, . . . , n} |= φ if φ is true in M under the variable
assignment that assigns di to xi for i = 1, . . . , n.

Definition 2.5 (Notation). Let L be a language, M = (D, I) an L structure,
then we define |M | = D. Moreover, we sometimes write d ∈ M if d ∈ D
and for a symbol σ ∈ L, we also denote its interpretation σI in M by σM .
Let φ(x1, . . . , xn) be an L formula and d1, . . . , dn ∈ D|x⃗|, then we write
M |= φ(d1, . . . , dn) if M, {xi 7→ di | i = 1, . . . , n} |= φ. Furthermore, we
write M |= φ, if M, {xi 7→ di | i = 1, . . . , n} |= φ, for all d1, . . . , dn ∈ M .
Similarly, we write M |= C for an L clause C with free variables x1, . . . , xn,
if M, {xi 7→ di | i = 1, . . . , n} |= C for all d1, . . . , dn ∈M . Let ∆ be a set of
formulas and clauses, then we write M |= ∆ if M |= δ for each δ ∈ ∆. We
write Λ |= ∆ if for every model M of Λ we have M |= ∆.

Definition 2.6. Let L be a language and M a first-order structure, then we
define

Th(M) := {φ |M |= φ,φ is an L sentence}.

We are often interested in the formulas that have a certain structure.

Definition 2.7. We say that a formula is ∃0 (or ∀0 or open) if it is quantifier-
free. We say that a formula is ∃n+1 (∀n+1) if it is of the form (∃x⃗)φ(x⃗, y⃗)
((∀x⃗)φ(x⃗, y⃗)), where φ is ∀n (∃n) and x⃗ is a possibly empty vector of vari-
ables. Let L be a first-order language, then by Literal(L), Open(L), ∃n(L),
and ∀n(L) we denote the set of literals, open formulas, ∃n formulas, and ∀n
formulas of the language L. We say that a theory is ∀n (∃n) if all of its
axioms are ∀n (∃n).

As mentioned above, automated theorem provers often work on sets of
clauses, rather than formulas. Hence, it is necessary to discuss how formulas
are associated with clause sets. In the following definition we fix one such
translation that we use throughout the article.

Definition 2.8. By CNF we denote a fixed function that assigns to any
∀1 sentence φ, a clause set Cφ such that L(φ) = L(Cφ) and φ and Cφ are
logically equivalent. Let T be a ∀1 theory, then CNF (T ) :=

⋃
φ∈T CNF (φ).

The function CNF fixed by the definition above could for example be the
translation to conjunctive normal form that proceeds by moving negations
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inwards and by distributing disjunction over conjunction. We did not fix this
particular translation because it is irrelevant for us how a conjunctive normal
form is obtained as long as the translation preserves the language and is
logically equivalent to the original sentence. Since this article focuses on the
interaction of induction and Skolemization, we choose to exclude conjunctive
normal form translations that do not preserve the language. The question
how these more advanced transformations interact with induction is clearly
also important and should be investigated separately.

2.2 Skolemization

We essentially use inner Skolemization with canonical names. On the one
hand this form of Skolemization is convenient from a theoretical point of
view, because it can be described as a function on formulas. In particular, the
canonical naming schema for Skolem symbols allows us to be precise about
the languages generated during the saturation processes considered in this
article. On the other hand, inner Skolemization performs comparatively well
with respect to proof complexity [BL94], and furthermore using canonical
Skolem symbols does not increase proof complexity. Hence, this form of
Skolemization is also a reasonable choice from the perspective of automated
deduction.

We start by defining an operator describing all the Skolem symbols that
can be obtained by Skolemizing a single quantifier over a given language L.
This operator is then iterated on the language L in order to produce all the
Skolem symbols that are required to Skolemize L formulas.

Definition 2.9. Let L be a first-order language, then we define

SQ(L) := {s(Qx)φ/n | φ is an L formula, |FV((Qx)φ)| = n},

where Q ∈ {∀, ∃}. We set S(L) := S∀(L) ∪S∃(L). Now we define sk(L) :=
L ∪ S(L). By sk i(L) we denote the i-fold iteration of the sk operation.
Finally, we define skω(L) :=

⋃
i<ω sk

i(L). We call the stage of a symbol the
least i ∈ N such that the symbol belongs to the language sk i(L). A first-order
language L is Skolem-free if it does not contain any of its Skolem symbols,
that is, if L ∩S(skω(L)) = ∅.

Now we can define the universal and existential Skolem form of a formula.

Definition 2.10. We define the functions sk∀, sk∃ : F(skω(L)) → F(skω(L))
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mutually inductively as follows

skQ(P (⃗t)) := P (⃗t),

skQ(A ∧B) := skQ(A) ∧ skQ(B),

skQ(A ∨B) := skQ(A) ∨ skQ(B),

skQ(¬A) := ¬skQ(A),
skQ((Qx)A(x, y⃗)) := skQ(A(s(Qx)A(x,y⃗)(y⃗), y⃗)), (*)

skQ((Qx)A) := (Qx)skQ(A),

for Q ∈ {∀,∃}, ∀ = ∃, ∃ = ∀, and where in (*) y⃗ are exactly the free
variables of (Qx)A. Let Γ be a set of formulas, then we define skQ(Γ) :=
{skQ(φ) | φ ∈ Γ}.

Before we discuss some details of the sk∃ function in more detail, we will
look at an example that illustrates how the function sk∃ operates.

Example 2.11. Let P/3 be a predicate symbol, then the existential Skolem
form of the sentence (∃x)(∀y)(∃z)P (x, y, z) is given by

sk∃((∃x)(∀y)(∃z)P (x, y, z)) = sk∃((∀y)(∃z)P (c, y, z))
= (∀y)(sk∃((∃z)P (c, y, z))))
= (∀y)(sk∃(P (c, y, f(y)))) = (∀y)P (c, y, f(y)).

where c = s(∃x)(∀y)(∃z)P (x,y,z) and f = s(∃z)P (c,y,z) = s(∃z)P (s(∃x)(∀y)(∃z)P (x,y,z),y,z).

Observe that the symbols that are introduced by sk∃ depend on the
names of the variables. Thus, in particular, the symbols introduced for two
formulas that only differ in the names of bound variables may not be the
same. For example, let P be a unary predicate symbol, then

sk∃((∃x)P (x)) = P (s(∃x)P (x)) ̸= P (s(∃y)P (y)) = sk∃((∃y)P (y)).

Clearly, we could build the equivalence of formulas up to renaming into the
Skolemization function. However, we prefer not to draw logical reasoning
into the definition of the Skolemization function. Identification of provably
equivalent formulas can be added by means of additional axioms, such as
the Skolem axioms given in Definition 2.13.

The following property of Skolemization is well-known.

Proposition 2.12. Let L be first-order language and φ an skω(L) formula.
Then ⊢ sk∃(φ) → φ and ⊢ φ→ sk∀(φ).
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In general we do not have the converse of the above implications. We
will now introduce Skolem axioms. These axioms essentially correspond to
the existential Skolem form of the logical axioms φ→ φ.

Definition 2.13. Let L be a first-order language, and φ(x, y⃗) an skω(L)
formula, then we define

SA∃
xφ := (∃x)φ→ φ(s(∃x)φ(y⃗), y⃗),

SA∀
xφ := φ(s(∀x)φ(y⃗), y⃗) → (∀x)φ.

We define L-SA := {(∀y⃗)SAQx φ | Q ∈ {∀, ∃}, s(Qx)φ(x,y⃗) ∈ skω(L)}.

The Skolem axioms allow us to also obtain the converse of Proposi-
tion 2.12.

Proposition 2.14. Let L be a first-order language, φ an skω(L) formula,
and Q ∈ {∀, ∃}. Then we have L-SA ⊢ φ↔ skQ(φ).

Proof. Straightforward.

Skolem axioms over a Skolem-free theory have the following well-known
conservation property.

Proposition 2.15. Let L be a Skolem-free first-order language and T be an
L theory, then L-SA + T ≡L T .

With the property above we now immediately obtain the well-known fact
that Skolemizing a theory results in a conservative extension of that theory.

Lemma 2.16. Let L be a Skolem-free language and T be an L theory, then

sk∃(T ) ≡L T.

Proof. The direction sk∃(T ) ⊑L T is an immediate consequence of Proposi-
tion 2.12. For the other direction we have T ≡Prop. 2.15

L L-SA+ T ≡Prop. 2.14

L-SA + sk∃(T ). Hence T ≡L sk∃(T ).

This also immediately gives us the following weaker statement that is
perhaps more familiar in automated deduction.

Corollary 2.17. Let L be a Skolem-free language and T be theory, then T
is consistent if and only if sk∃(T ) is consistent.
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2.3 Induction and arithmetic

We conclude the preliminary definitions with the definition of some notions
related to formal arithmetic. Let us start by discussing the setting for induc-
tion that we use in this article. In automated inductive theorem proving it is
customary to work with various inductively defined objects such as the nat-
ural numbers, lists, trees, and mutually recursive constructions. Typically
inductive theorem proving concentrates on a multi-sorted setting where a
subset of the sorts is interpreted as the term algebra constructed over a set
of function symbols, called the constructors. Such a construction, while of
great practical relevance, incurs significant notational complexity. There-
fore, in order to avoid overloading the presentation, we restrict our setting
to the natural numbers. However, we expect that our results straightfor-
wardly carry over to the more general case mentioned above, because the
structure of the induction axiom remains essentially the same.

Definition 2.18. By 0/0 and s/1 we denote the function symbols represent-
ing the natural number 0 and the successor function, respectively. Moreover,
we let L0 := {0/0, s/1}.

We can now define induction axioms and the first-order structural induc-
tion schema.

Definition 2.19. Let L be a language, and φ(x, z⃗) be an L formula, then
the L ∪ L0 formula Ĩxφ is given by

(φ(0, z⃗) ∧ (∀x)(φ(x, z⃗) → φ(s(x), z⃗))) → (∀x)φ(x, z⃗).

We refer to the variable x as the induction variable and to the variables z⃗
as the induction parameters. Moreover we define the induction axiom Ixφ
by Ixφ := (∀z⃗)Ĩxφ. Let Γ be a set of L formulas, then the set of L ∪ L0

sentences Γ-IND is given by {Ixγ | γ(x, z⃗) ∈ Γ}.

By an arithmetical language we understand a first-order language con-
taining the symbols 0/0, s/1, and possibly some symbols representing prim-
itive recursive functions. In the following definition we recall some standard
terminology for arithmetic.

Definition 2.20. Let L be an arithmetical language. By NL the structure
whose domain is the set of natural numbers and that interprets the non-logical
symbols of L in the natural way. An arithmetical theory is a theory over an
arithmetical language. Let T be an L theory. We say that the theory T is
sound if NL |= T . Furthermore, we say that T is ∃1-complete if NL |= φ
implies T ⊢ φ for all ∃1 L sentences.
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We conclude this section by describing the setting of linear arithmetic
that will in particular serve us in Section 6.2 for obtaining unprovability re-
sults for the methods [RV19, HHK+20]. The language of linear arithmetic
contains besides 0/0 and s/1 only the function symbols p/1 and +/2 as infix
symbol, where p denotes the predecessor function and + denotes the addi-
tion. Clearly, the setting of linear arithmetic is closely related to Presburger
arithmetic. However, we are not interested in the theory of the standard
interpretation, but rather in its subtheories such the ones that were already
studied by Shoenfield [Sho58]. This setting of linear arithmetic turns out
to be quite useful in the analysis of methods for automated inductive theo-
rem proving, because on the one hand it is simple enough to still allow for
straightforward model-theoretic constructions, yet it is complex enough to
provide interesting independence results.

Let us fix some notational conventions. Let m ∈ N and t be a term, then
by m · t we denote the term t + (t + · · · + (t + t) · · · ). Let f be a unary
function symbol, then fm(t) stands for f(· · · f(t) · · · ). By m we denote the
term sm(0). Our base theory for linear arithmetic is defined as follows.

Definition 2.21. By T we denote the theory axiomatized by the universal
closure of the following formulas

0 ̸= s(x), (A1)
p(0) = 0, (A2)

p(s(x)) = x, (A3)
x+ 0 = x, (A4)

x+ s(y) = s(x+ y), (A5)

We conclude with two basic observations about the theory T . We shall
make use of these observations at several occasions and will for the sake of
readability not mention them explicitly every time.

Lemma 2.22. T ⊢ s(x) = s(y) → x = y.

Proof. Use (A3).

Proposition 2.23. T is sound and ∃1-complete.

Proof. The soundness part is obvious. For the ∃1-completeness observe that
T decides ground formulas.
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3 Saturation-based systems and induction

Induction can be integrated into a saturation proving system in different
ways. One possibility is to contain the induction mechanism in a separate
module that may use a saturation prover to discharge subgoals. Moreover,
the induction module may receive additional information from the satura-
tion prover, for instance information about failed proof attempts [BHHW86].
Another, currently more popular, way is to integrate the induction mecha-
nism more tightly into the saturation system as some form of inference rule
[KP13, Ker14], [RV19, HHK+20], [Cru15, Cru17], [Wan17], [EP20]. In this
section we give an abstract framework for AITP methods integrating induc-
tion in saturation-proof systems in terms of a general induction rule. This
framework will allow us to investigate in Sections 4 and 5 the role of Skolem
symbols in these systems. In Section 6 we show that the methods described
in [RV19, HHK+20] fit into our framework. In Section 3.1 we define satu-
ration systems abstractly and introduce some related notions. After that,
Section 3.2 introduces the notion of induction rule as a general way to inte-
grate induction into a saturation system and presents a practically relevant
specialization of this induction rule.

3.1 Saturation-based proof systems

Saturation is a technique of automated theorem proving that consists of
computing the closure of a set of formulas or clauses under some inference
rules. The saturation process goes on until some termination condition, such
as the derivation of the empty clause, is met or until no more “new” formulas
can be generated. Typically saturation-based theorem provers operate in a
clausal setting because clauses have less structure and are therefore better
suited for automated proof search.

In what follows we concentrate on the refutational setting, because most
state-of-the art theorem provers are refutation provers. That is, in order to
determine for some theory T whether a given sentence φ is provable in T , the
prover saturates the clause set CNF (sk∃(T +¬φ)) until the empty clause is
derived. However our definitions can be easily adapted to the positive case
by dualizing them, so as to cover for example connection-like methods.

Practical saturation proof systems are usually based on a variant of the
superposition calculus. In order not to get involved in the technical details
of these saturation-based proof systems we will abstractly think of a such a
prover as a state transition system whose current state is a set of derived
clauses and whose state transitions are inference rules that generate new
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clauses. In particular, our notion of saturation system does not have any
notion of redundancy mechanisms such as simplification rules and deletion
rules. Since this article is mostly about upper bounds on the logical strength
of AITP methods, the assumption that clauses are never deleted is unprob-
lematic.

Definition 3.1 (Saturation systems). A saturation system S is a set of
inference rules of the form

C
D
,

also written as C/D where C is a set of clauses D is a finite set of clauses.
Let S1 and S2 be two saturation-based proof systems, then by S1 + S2 we
denote the system obtained by the union of the inference rules of S1 and S2.

Informally, an inference rule C/D indicates that if the system is in the
“state” C, then the system changes into the “state” C ∪ D. The reason why
we consider inference rules of this form is that they allow us to keep track
of global properties of the prover such as for example the language of the
currently derived clauses. Observe that our notion of inference rules is very
general since C may be infinite. Hence we could formulate an ω-rule for
saturation systems. However, we will only work with inference rules that
operate with the language of C and a finite set of clauses C0 ⊆ C.

Example 3.2. The resolution rule can be presented as follows:

{l ∨ C} ∪ {m ∨D} ∪ C
Res,

{(C ∨D)µ}

where C is a clause set, C and D are clauses, and µ is the most general
unifier of the literals l and m.

Definition 3.3 (Deduction, Refutation). Let C0 be a set of clauses and S a
saturation-based proof system. A deduction from C0 in S is a finite sequence
of clause sets D0, . . . ,Dn such that C0 = D0 and Di+1 = Di ∪ Bi such that
Di/Bi is an inference rule of S for 0 ≤ i < n. We say that a clause C
is derivable from C0 in S if there exists a deduction D0, . . . ,Dn such that
C ∈ Dn. A deduction D0, . . . ,Dn is called a refutation if □ ∈ Dn.

Since we are usually interested in extending saturation systems for pure
first-order logic by inference rules for induction we need to introduce the
notion of soundness and refutational completeness.
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Definition 3.4. Let S be a saturation system. We say that S is sound if
whenever a clause C is derivable from a clause set C0 in S, then L(C) ⊆
L(C0) and C0 |= C. The saturation system S is said to be refutationally
complete if there is a refutation from C0 if C0 is inconsistent.

3.2 Induction rules

Typically induction is integrated in a saturation prover by a mechanism,
that, upon some condition, selects some clauses out of the generated clauses
and constructs an induction formula based on the selected clauses. After
that, the resulting induction axiom is clausified and the clauses are added to
the search space [KP13, Ker14, RV19, HHK+20, Cru15, Wan17]. The sys-
tems differ in the heuristics that are used to construct the induction formula,
in the shape of the resulting induction formulas and in the conditions upon
which an induction axiom is added to the search space. For instance, Ker-
sani and Peltier’s method [KP13, Ker14] carries out an induction only once,
namely when the generated clauses are sufficient to derive the empty clause.
Thus this method does, technically speaking, not even generate clauses. We
abstract the induction mechanisms of the aforementioned methods by the
following induction rule.

Definition 3.5. The induction rule INDR is given by

C
INDR

CNF (sk∃(Ixφ(x, z⃗)))

where C is a set of clauses, φ(x, z⃗) is a L(C) formula.

Despite being limited to natural numbers, the induction rule presented
above is very general in the sense that it does not impose any restrictions
on the complexity of the induction formulas. None of the methods known
to us comes even close to making use of the full power offered by that rule.
Nevertheless, it will serve us as a useful tool for theoretical analyses.

There is an important observation that we can make about this induction
rule. First of all, in a saturation system with this induction rule Skolemiza-
tion may happen at any time and not just once before the saturation pro-
cess begins, as is the case in saturation systems for pure first-order logic.
Secondly, the induction rule INDR permits Skolem symbols to appear in in-
duction formulas. In other words, the induction INDR iteratively extends
the language of the induction formulas by Skolem symbols. Interestingly, a
similar situation has been considered in the literature on mathematical logic
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[Bek03]. In saturation systems for pure first-order logic, the role of Skolem-
ization is clear: It allows us to obtain an equiconsistent formula without
existential quantifiers (see Corollary 2.17). In saturation systems with the
induction rule INDR the role of Skolemization is not clear anymore, in the
sense of Corollary 2.17. This raises the question how the extension of the
language of induction formulas by Skolem symbols affects the power of the
system. Also note that this feature is not artificial but actually appears in
the concrete methods mentioned above.

We shall address this question in Section 4. In particular we will provide
a logical characterization of refutability in a sound and complete saturation
system extended by the induction rule INDR in terms of a theory with an
induction schema (see Theorem 4.11). As a corollary we obtain the soundness
of the rule INDR (see Corollary 4.12).

The following example illustrates how to use the above induction rule.

Example 3.6. Let us work in the setting of linear arithmetic and let S be a
sound and refutationally complete saturation system. We will now outline a
refutation in S + INDR of the clause set C0 given by

CNF (sk∃(T + ¬(∀x)(∀y)x+ y = y + x)).

Let sk∃(¬(∀x)(∀y)x+ y = y + x) = (c1 + c2 ̸= c2 + c1), then we have c1 ∈
L(C0) and

C0 |= c1 + c2 ̸= c2 + c1. (1)

Let φ1(x) := (c1 + x = x+ c1), then we may apply the induction rule INDR

to obtain the clause set C1 := C0 ∪ CNF (sk∃(Ixφ1(x))). Let sk∃(Ixφ1(x)) =
(φ1(0) ∧ (φ1(c3) → φ1(s(c3)))) → ∀xφ1(x), then we have c3 ∈ L(C1) and
furthermore by (1) we have

C1 |= ¬φ1(0) ∨ ¬(φ1(c3) → φ1(s(c3))). (2)

Since C1 |= c1 = c1 + 0, we have C1 |= φ(c1, 0) ↔ c1 = 0 + c1. Let φ2(x) :=
x = 0 + x, then we apply the induction rule INDR in order to obtain the
clause set C2 := C1 ∪ CNF (sk∃(Ixφ2)). Let sk∃(Ixφ2) := (φ2(0) ∧ (φ2(c4) →
φ2(s(c4)))) → (∀x)φ2, then by (2) we have

CNF (C2) |= ¬φ2(0) ∨ ¬(φ2(c4) → φ2(s(c4))) ∨ ¬(φ1(c3) → φ1(s(c3))). (3)

Now observe that T |= 0 = 0 + 0 and T |= 0 + s(c4) = s(0 + c4). Hence,
T |= c4 = 0 + c4 → s(c4) = s(0 + c4), that is, T |= φ2(c4) → φ2(c4) and
T |= φ2(0). Therefore, by (3) we obtain

C2 |= ¬(φ1(c3) → φ1(s(c3))). (4)
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Recall that φ1(x) = (c1 + x = x+ c1). Since T |= c1 + s(x) = s(c3 + x), we
have by (4), C2 |= φ1(c3) ↔ s(c3+c1) ̸= s(c3)+c1. Let φ3(x) = (s(c3+x) =
s(c3) + x), then by the above we obtain

C2 |= ¬φ3(c3). (5)

Now we apply the induction rule INDR in order to obtain the clause set
C3 := C2 ∪CNF (sk∃(Ixφ3)). Let sk∃(Ixφ3) = (φ3(0)∧ (φ3(c5) → φ3(c5))) →
(∀x)φ3, then by (5) we have

C3 |= ¬φ3(0) ∨ ¬(φ3(c5) → φ3(s(c5)).) (6)

Since CNF (T ) |= s(c3+0) = s(c3) = s(c3)+0, we have C3 |= φ(0). Moreover,
CNF (T ) |= s(c3 + s(c5)) = s(s(c3 + c5)), hence CNF (T ) |= φ3(c5) →
φ3(s(c5)). Hence, by (6), we have C3 |= ⊥. Hence, by the refutational
completeness of S we obtain a refutation of C3. Therefore, by combining the
applications of INDR used to obtain C3 with the S refutation of C3 we obtain
a S + INDR refutation of C0.

Analyzing the rule INDR will give us some general insights about the
role of Skolem symbols in saturation systems with induction, however in
order to be more specific about particular methods we have to consider
some restricted forms of this induction rule. We start by introducing some
additional terminology. We call initial Skolem symbols those Skolem symbols
that arise from the Skolemization of the input problem and induction Skolem
symbols those Skolem symbols that are generated by an application of the
induction rule.

Before we introduce a restriction of the induction rule that is of practi-
cal relevance we will discuss some remarkable design choices encountered in
practical methods that we will incorporate into the induction rule:

• Syntactical restriction of induction formulas: The methods presented
in [RV19, HHK+20] restrict induction formulas to literals, [KP13, Ker14]
restricts induction formulas to ∃1 formulas, and [Cru15, Cru17] re-
stricts induction formulas to ∀1 formulas.

• Control over occurrences of Skolem symbols: The practical induction
mechanisms exert control over occurrences of the induction Skolem
symbols either by avoiding the introduction of Skolem symbols alto-
gether [KP13, Ker14] or by introducing nullary Skolem symbols only
[RV19, HHK+20], [Cru15, Cru17]. In particular none of these meth-
ods allows for parameters in the induction formula. As a consequence
induction Skolem symbols trivially occur as subterms of ground terms.
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Restrictions on the shape of the induction formulas is a feature that is com-
mon to all methods for automated inductive theorem proving because it is
currently still difficult to search efficiently for a syntactically unrestricted
induction formula. We incorporate this feature into the induction rule by
parameterizing it by a set of formulas from which the induction formulas are
constructed. The second feature is only slightly more complicated to gener-
alize. If we are to allow induction formulas with quantifier alternations, then
Skolemizing the corresponding induction axioms introduces Skolem symbols
that are not nullary. Hence variables may occur in the scope of induction
Skolem symbols. Therefore we generalize the second feature by explicitly
requiring that variables do not occur within the scope of a Skolem symbol.
In other words we require that Skolem symbols may appear in the induction
formula only in subterms of ground terms. Both generalized features are
captured by the following restricted induction rule.

Definition 3.7. Let Γ be a set of formulas, then the rule Γ-GINDR is given
by

C
Γ-GINDR,

CNF (sk∃(Ixφ(x, t⃗)))

where C is a set of clauses, φ(x, z⃗) ∈ Γ, and t⃗ is a vector of ground L(C)
terms.

Remark 3.8. This restriction on occurrences of Skolem symbols is not only
motivated by abstracting the current practice in AITP, it is also of indepen-
dent theoretical interest: As described in [Dow08], Skolemization without this
restriction in simple type theory makes the axiom of choice derivable, hence
this restriction has been introduced in [Mil87]. This restriction is also used
as an assumption for proving elementary deskolemization of proofs with cut
in [BHW12], [Kom21].

Let us again consider an example to illustrate the rule.

Example 3.9. Consider the refutation carried out in Example 3.6. We have
used the induction rule three times to derive the clause sets CNF (sk∃(Ixc1+
x = x + c1)), CNF (sk∃(Ixx = 0 + x)), and CNF (Ixs(c3 + x) = s(c3) +
x). All three induction formulas are equational atoms in which only nullary
Skolem symbols appear. Hence the refutation outlined in Example 3.6 is also
a refutation in S+Eq(T )-GINDR, where Eq(L) denotes the set of equational
atoms over the language L.

As with the rule INDR we now have to ask the question how the system
behaves. There are two major cases that we need to distinguish depending
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on whether the set of formulas Γ may contain initial Skolem symbols. By
letting Γ be a set of Skolem-free formulas, we can restrict the occurrences of
all Skolem symbols in the induction formulas. In Section 5 we mainly con-
centrate on this case and provide a characterization for the refutability in a
sound and refutationally complete saturation system with the rule Γ-GINDR,
thus, settling the question. In practical systems the initial Skolem symbols
usually can appear in the induction formulas without restriction, that is,
these systems correspond to the case where the formulas in Γ may contain
initial Skolem symbols. However, this case is actually part of a more general
open problem concerning occurrences of Skolem symbols in axiom schemata,
that we will not address in the this article (see Remark 3.8). Nevertheless,
we can handle the simple case when the initial Skolem symbols are nullary.
We will mainly deal with this case in Section 6 in order to provide an un-
provability result for the methods described in [RV19] and [HHK+20].

4 Unrestricted induction and Skolemization

In the previous section we have abstractly described a common integration
of induction into a saturation system via the induction rule INDR. In this
section we will first represent a sound and refutationally complete saturation
system extended by the rule INDR as a logical theory. After that we make
use of this representation in order to investigate the interaction between
Skolemization and the induction rule.

4.1 Representation as logical theory

A useful technique when analyzing AITP methods is to reduce the system
to an “equivalent” logical theory. Alternatively, when such a theory cannot
be found it is a good practice to approximate the system by a logical theory
as closely as possible. The construction of that theory usually reveals the
essential features of the method. Moreover, we can then make use of pow-
erful techniques from mathematical logic in order to study the theory. In
particular, we can compare methods in terms of their representative theories.

Definition 4.1. Let T be a theory, then we define the Skolem induction
operator SI by

SI(T ) := T + sk∃(L(T )-IND)

By SIi(T ) we denote the i-fold iteration of SI on T . Finally, we define
SIω(T ) :=

⋃
i<ω SI

i(T ).
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In the following we will show that the theory SIω(T ) is a faithful repre-
sentation of a saturation system extended by the induction rule INDR and
operating on an initial clause set corresponding to a theory T . In other
words, we will show that for a sound and refutationally complete saturation
system S and a theory T , the saturation system S+INDR refutes the clause
set CNF (sk∃(T )) if and only if SIω(sk∃(T )) is inconsistent. Intuitively, we
can see that this is the case because the operation SI(T ) corresponds to a
simultaneous application of INDR to all L(T ) formulas. However, by the
compactness theorem for first-order logic, only finitely many of these induc-
tion formulas actually appear in a proof of the inconsistency of SIω(sk∃(T )).
Hence we can derive the same induction axioms with the induction rule
INDR.

Lemma 4.2. Let S be a sound saturation system and T be a theory. If
S+INDR refutes CNF (sk∃(T )), then the theory SIω(sk∃(T )) is inconsistent.

Proof. We show the slightly stronger claim that for a S + INDR deduction
C0 ⊆ C1 ⊆ · · · ⊆ Cj from CNF (sk∃(T )), we have L(Cj) ⊆ L(SIj(sk∃(T ))) and
SIω(sk∃(T )) |= Cj . We proceed by induction on j. For the induction base j =
0 we have SIω(sk∃(T )) |= C0 and L(C0) ⊆ L(SI0(sk∃(T )) = L(sk∃(T )), since
C0 ⊆ CNF (sk∃(T )). For the induction step we consider the clause set Cj+1.
If Cj+1 is obtained by an inference from S, then by the soundness of S we
have L(Cj+1) = L(Cj) and Cj |= Cj+1. Hence by the induction hypothesis we
have SIω(sk∃(T )) |= Cj+1 and clearly L(Cj+1) = L(Cj) ⊆ L(SIj(sk∃(T ))) ⊆
L(SIj+1(sk∃(T ))). If Cj+1 is obtained by an application of the INDR rule,
then Cj+1 = Cj ∪ CNF (sk∃(Ixφ(x, z⃗))), where φ is an L(Cj) formula. Since
L(Cj) ⊆ L(SIj(sk∃(T ))) we have sk∃(Ixφ(x, z⃗)) ∈ SIj+1(sk∃(T )), hence
L(Cj+1) ⊆ SIj+1(sk∃(T )). Moreover since SIj(sk∃(T )) |= Cj we clearly
have SIj+1(sk∃(T )) |= Cj+1.

Lemma 4.3. Let S be a refutationally complete saturation-based proof sys-
tem and T be a theory. If the theory SIω(sk∃(T )) is inconsistent, then
S + INDR refutes CNF (sk∃(T )).

Proof. Assume that SIω(sk∃(T )) is inconsistent, then by the compactness
theorem there exists a finite subset S of SIω(sk∃(T )) such that S is in-
consistent. Furthermore there clearly exist sets S0, S1, . . . , Sn with n ∈ N
such that S0 ⊆ sk∃(T ), S ⊆ Sn, and Si = Si−1 ∪ {sk∃(Ii)}, with Ii ∈
SIi−1(sk∃(T ))-IND and L(Ii) ⊆ L(Si), for i = 1, . . . , n.

Now we can easily construct a refutation of CNF (sk∃(T )) in S + INDR

by letting C0 = CNF (sk∃(T )), and obtaining Ci = Ci−1 ∪ CNF (sk∃(Ii))
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for i = 1, . . . , n by the INDR rule. Clearly, Cn is logically equivalent to
Sn, therefore we obtain a refutation from Cn because of the refutational
completeness of S.

We summarize the results so far in the following proposition.

Proposition 4.4. Let S be a sound and refutationally complete saturation-
based proof system and T be a theory. Then S+INDR refutes CNF (sk∃(T ))
if and only if the theory SIω(sk∃(T )) is inconsistent.

Proof. An immediate consequence of Lemma 4.2 and Lemma 4.3.

The theory SIω(sk∃(T )) is still not very convenient to work with. By
working it a bit we can on the one hand eliminate the recursion that inter-
leaves induction and Skolemization and secondly we can even “factor” out
the Skolemization part. We start by analyzing which Skolem symbols occur
in the theories generated by SIω(·). Our first observation is that induction
axioms that do not bind a free variable of the inducted upon formula allow
us to introduce all the Skolem symbols.

Lemma 4.5. Let φ(y⃗) be a formula and u a variable which does not occur
in φ. Then L(sk∃(Ĩuφ)) = L(sk∃(φ → φ)) and moreover ⊢ sk∃(Ĩuφ) ↔
sk∃(φ→ φ).

Proof. Since the variable u does not occur in φ, we clearly have

sk∃(Ĩuφ) = sk∀(φ) ∧ sk∀(∀u(φ→ φ)) → sk∃((∀u)φ)
= sk∀(φ) ∧ (sk∃(φ) → sk∀(φ)) → (∀u)(sk∃(φ)).

Since sk∃(φ → φ) = sk∀(φ) → sk∃(φ) we clearly have L(sk∃(Ĩuφ)) =
L(sk∃(φ → φ)). Furthermore, sk∃(Ĩuφ) clearly is logically equivalent to
sk∃(φ→ φ).

The formulas of the form sk∃(φ→ φ) are of interest because they corre-
spond, roughly speaking, to Skolem axioms.

Remark 4.6. The requirement in Lemma 4.5 that the induction formula
does not contain the induction variable is peculiar, but convenient to handle.
A similar result as Lemma 4.5 can be achieved without this assumption by
working, for example, with induction formulas of the form u = u ∧ φ, where
the variable u is not free in the formula φ. In practice a system does usually
not intentionally use its induction mechanism to introduce Skolem axioms.
Instead some systems (for example [Cru15, Cru17]) provide a lemma rule
that introduces the clauses CNF (sk∃(φ→ φ)) into the search space.

20



Lemma 4.7. Let T be a theory, then L(SIω(T )) = skω(L(T ) ∪ L0).

Proof. The inclusion ⊆ is obvious. For the inclusion ⊇ observe that

L(SIω(T )) =
⋃
k<ω

L(SIk(T )).

Hence, it suffices to show that for every symbol σ ∈ skω(L(T ) ∪ L0), there
exists k ∈ N such that σ ∈ L(SIk+1(T )). We proceed by induction on the
stage of the symbol σ. For the base case let σ have stage 0, then it belongs
to L(T )∪L0 and we already have σ ∈ L(SI1(T )). Now if σ ∈ skω(L(T )∪L0)
has stage n > 0, then it is a Skolem symbol of the form σ = s(Qx)φ with Q ∈
{∀, ∃} and (Qx)φ only contains symbols of stage less than n. Hence by the
induction hypothesis L((Qx)φ) ⊆ L(SIk+1(T )) for some k ∈ N. Therefore
sk∃(Iu(Qx)φ) ∈ SIk+2(T ), thus by Lemma 4.5 the symbol s(Qx)φ belongs to
L(SIk+2(T )), where u is a variable that does not occur freely in (Qx)φ.

With this in mind we see that SIω(T ) contains the existential Skolem-
ization of the skω(L(T )) induction schema. This allows us to eliminate the
iteration of the operator SI(·) that was used to build up the language of the
induction.

Lemma 4.8. Let T be a theory, then SIω(T ) ⊢ sk∃(skω(L(T ) ∪ L0)-IND).

Proof. Let φ be an skω(L(T )∪L0) formula. By Lemma 4.7 we have L(SIω(T )) =⋃
k<ω L(SI

k(T )) = skω(L(T ) ∪ L0). Hence, there exists k ∈ N such that
L(φ) ⊆ L(SIk(T )). Therefore, SIk+1(T ) ⊢ sk∃(Ixφ).

Again by using Lemma 4.5 it is straightforward to see that by Skolemizing
the induction schema skω(L)-IND we actually obtain all the Skolem axioms.

Lemma 4.9. Let L be a first-order language, then sk∃(skω(L)-IND) ⊢ L-SA.

Proof. Let φ(x, y⃗) be an skω(L) formula and u be a variable not occur-
ring freely in φ. Work in sk∃(skω(L)-IND), then in particular we have
sk∃(Ĩu((∀x)φ(x, y⃗))). We apply Lemma 4.5 to Ĩu((∀x)φ) in order to obtain

sk∀((∀x)φ(x, y⃗)) → sk∃((∀x)φ(x, y⃗)).

By Proposition 2.12 we have ⊢ sk∃((∀x)φ) → (∀x)φ, and hence we obtain

sk∀((∀x)φ(x, y⃗)) → (∀x)φ(x, y⃗).
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Now observe that sk∀((∀x)φ(x, y⃗)) = sk∀(φ(s(∀x)φ(x,y⃗)(y⃗), y⃗)). Again by
Proposition 2.12 we have ⊢ ψ → sk∀(ψ) for all skω(L) formulas ψ. Therefore,
we obtain the desired Skolem axiom

φ(s(∀x)φ(y⃗), y⃗)) → (∀x)φ.

Now in order to obtain SA∃
xφ we start with sk∃(Ĩu(¬(∃x)φ)) and apply

Lemma 4.5 to obtain

sk∀(¬(∃x)φ) → sk∃(¬(∃x)φ).

From this we clearly obtain ¬sk∃((∃x)φ) → ¬sk∀((∃x)φ), thus, we get

sk∀((∃x)φ) → sk∃((∃x)φ).

Now by Proposition 2.12 we first obtain (∃x)φ→ sk∃(φ(s(∃x)φ(y⃗), y⃗)). Since
sk∃((∃x)φ(x, y⃗)) = sk∃(φ(s(∃x)φ(y⃗), y⃗)), we get (∃x)φ → φ(s(∃x)φ(y⃗), y⃗) by
another application of 2.12.

Proposition 4.10. Let T be a theory, then

SIω(sk∃(T )) ≡ (L(T ) ∪ L0)-SA + T + skω(L(T ) ∪ L0)-IND.

Proof. First of all observe that skω(L(sk∃(T )) ∪ L0) = skω(L(T ) ∪ L0) and
therefore (L(sk∃(T )) ∪ L0)-SA = (L(T ) ∪ L0)-SA. For the direction from
right to left we observe that

(L(T ) ∪ L0)-SA + T + skω(L(T ) ∪ L0)-IND ⊢
sk∃(T ) + sk∃(skω(L(T ) ∪ L0)-IND).

With this in mind it is straightforward to see that (L(T ) ∪ L0)-SA + T +
skω(L(T ) ∪ L0)-IND ⊢ SIω(sk∃(T )). For the direction from left to right, we
observe that by Lemmas 4.8, 4.9 we have

SIω(sk∃(T )) ⊢ (L(T ) ∪ L0)-SA + sk∃(T ) + sk∃(skω(L(T ) ∪ L0)-IND).

Hence, by Proposition 2.14 we obtain

SIω(sk∃(T )) ⊢ (L(T ) ∪ L0)-SA + T + skω(L(T ) ∪ L0)-IND.

As an immediate consequence of the results above we obtain the follow-
ing characterization of refutability in a sound and refutationally complete
saturation based system extended by the induction rule INDR.
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Theorem 4.11. Let S be a saturation system, T a theory, and φ an L(T )
sentence.

(i) If S is sound and S + INDR refutes CNF (sk∃(T + ¬φ)), then

(L(T ) ∪ L0)-SA + T + skω(L(T ) ∪ L0)-IND ⊢ φ.

(ii) If S is refutationally complete and

(L(T ) ∪ L0)-SA + T + skω(L(T ) ∪ L0)-IND ⊢ φ,

then S + INDR refutes CNF (sk∃(T + ¬φ)).

Proof. Statement (i) is an immediate consequence of Lemma 4.2 and Propo-
sition 4.10 and Statement (ii) is an immediate consequence of Lemma 4.3
and Proposition 4.10.

As a corollary we obtain the soundness of the INDR rule with respect to
the standard model of an arithmetical language.

Corollary 4.12. Let S be a sound saturation system, L an arithmetical
language, T a sound L theory, and σ an L sentence. If S + INDR refutes
the clause set CNF (sk∃(T + ¬σ)), then NL |= σ.

Proof. By (i) of Theorem 4.11 it suffices to show that

L-SA + T + skω(L)-IND ⊑L Th(NL).

This is shown by expanding NL by suitable Skolem functions, just as in the
traditional model-theoretic proof of Proposition 2.15. The resulting structure
satisfies skω(L)-IND since NL has induction for all subsets of N.

We conclude this section with a remark.

Remark 4.13. In the presence of the Skolem axioms every formula is equiv-
alent to an open formula. In particular, for a language L, we have

(L ∪ L0)-SA +Open(skω(L))-IND ⊢ skω(L)-IND.

Thus, we can formulate Theorem 4.11 in a slightly more canonical way, by
using Open(skω(L))-IND in place of skω(L)-IND. In other words, in the
presence of Skolem axioms Skolem symbols permit us to simulate quantifi-
cation. Conceptually, we can thus split the unrestricted induction rule of
Definition 3.5 into a lemma rule and an induction rule for clause sets.
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4.2 Conservativity

In the previous section we have characterized the extension of a sound and
refutationally complete saturation system by the induction rule INDR in
terms of a theory with induction over formulas that contain Skolem symbols.
This gives rise to the question how the addition of Skolem symbols to the
language of the induction schema affects the strength of the system. In
particular, can we provide an equivalent Skolem-free induction schema? Let
L be a Skolem-free language and T an L theory, then a natural candidate
for a Skolem-free characterization of the strength of L-SA+T + skω(L)-IND
is the theory T + L-IND.

Question 4.14. Let L be a Skolem-free language and T an L theory, do we
have

L-SA + T + skω(L)-IND ⊑L T + L-IND?

In the following we give a partial answer to the above question. The
general case remains open. Our answer relies on the following idea: If a
Skolem function is definable in terms of an L formula then wherever the
Skolem symbols occurs we can instead use its definition to eliminate the
symbol.

Definition 4.15. Let L be a Skolem-free language and M an L structure.
A function f : |M |k → |M | is called L-definable in M if there exists an L
formula φ(x⃗, y) such that for all d⃗ ∈ |M |k we have f(d⃗) = b if and only if
M |= φ(d⃗, b).

Definition 4.16. Let L be a Skolem-free language. We say that an L struc-
ture M has definable Skolem functions if for every L formula φ(x⃗, y) there
exists a function f : |M |k → |M | that is L-definable in M and

M |= (∃y)φ(d⃗, y) → φ(d⃗, f(d⃗)), for all d⃗ ∈ |M |k.

Proposition 4.17. Let T be a Skolem-free theory. If every model M of
T + L(T )-IND has definable Skolem functions, then

L(T )-SA + T + skω(L(T ))-IND ≡L(T ) T + L(T )-IND.

For the sake of the presentation we have moved the proof of Proposi-
tion 4.17 to Appendix A. The proof essentially proceeds by replacing in each
model the occurrences of the Skolem symbols by instances of their defining
formulas.

In order to illustrate Proposition 4.17 we will consider some practically
relevant special cases. An important special case of Proposition 4.17 is when
the Skolem functions are definable already in a theory.
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Definition 4.18. Let T be a Skolem-free theory. We say that T has defin-
able Skolem functions if for each L(T ) formula φ(x⃗, y), there exists an L(T )
formula ψ(x⃗, y) such that

T ⊢ (∃y)φ(x⃗, y) → (∃!y)(ψ(x⃗, y) ∧ φ(x⃗, y)).

Proposition 4.19. Let T be a Skolem-free theory with definable Skolem
functions, then every model of T has definable Skolem functions.

Proof. Let φ(x⃗, y) be an L(T ) formula. Since T has definable Skolem func-
tion, there exists ψ(x⃗, y) such that T ⊢ (∃y)φ(x⃗, y) → (∃!y)(ψ(x⃗, y) ∧ φ(x⃗, y)).
Now let

ψ′(x⃗, y) := (¬(∃y)φ(x⃗, y) ∧ y = 0) ∨ ((∃y)φ(x⃗, y) ∧ ψ(x⃗, y)).

Let us now show that T ⊢ (∃!y)ψ′(x⃗, y). We work in T , if (∃y)φ(x⃗, y), then
there is some y such that ψ(x⃗, y) and φ(x⃗, y). Hence we have ψ′(x⃗, y). If there
is no y such that φ(x⃗, y), then we have ψ′(x⃗, 0). Assume that ψ′(x⃗, y1) and
ψ′(x⃗, y2). If (∃y)φ(x⃗, y), then we have ψ(x⃗, y1) and ψ(x⃗, y2), thus, y1 = y2.
Otherwise if ¬(∃y)φ(x⃗, y), then we have y1 = y2 = 0.

In particular, a theory has definable Skolem functions if it has a definable
well-order. We simply need to define the Skolem functions in terms of the
least of the candidate values in each point.

Definition 4.20. Let L be a language, and θ(x, y) an L formula in two
variables. For the sake of legibility we write θ(x, y) as x ≺θ y and by
(∀x≺θy)ψ(x, y) we abbreviate the formula (∀x)(x ≺θ y → ψ(x, y)). The total
order axioms TOθ for θ are given by the universal closure of the following
formulas

x ̸≺θ x,

x ≺θ y ∧ y ≺θ z → x ≺θ z,

x ≺θ y ∨ y ≺θ x ∨ x = y.

The least number principle L-LNPθ for θ(x, y) consists of the axioms

(∀z⃗)
(
(∃x)ψ(x, z⃗) → (∃x)(ψ(x, z⃗) ∧ (∀x′≺θx)¬ψ(x′, z⃗))

)
,

where ψ(x, z⃗) is an L formula. We define L-WOθ := TOθ + L-LNPθ.

Proposition 4.21. Let T be a Skolem-free theory. If there exists an L(T )
formula θ(x, y) such that T ⊢ L(T )-WOθ, then T has definable Skolem func-
tions.
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Proof. Let φ(x⃗, y) be an L(T ) formula. We set ψ(x⃗, y) = φ(x, y)∧(∀y′≺θy)¬φ(x⃗, y′).
Now work in T and assume that (∃y)φ(x⃗, y), then by the least number prin-
ciple there exists y such that φ(x⃗, y) and moreover (∀y′≺θy)¬φ(x⃗, y′). It
remains to show that this y′ is unique. Let u be an element with φ(x⃗, y)
and (∀u′≺θu)¬φ(u, y). If u ≺θ y, then we obtain ¬φ(x⃗, u). Analogously we
obtain ¬φ(x⃗, y) if y ≺θ u. Hence u = y.

These results are quite far-reaching. For example, for every sound arith-
metic theory T containing the symbol +/2 with the usual primitive recursive
definition of + we have

T + L(T )-IND ⊢ L(T )-WOθ,

where θ := (∃z)x+ z = y. Therefore, extending the full induction principle
by all the Skolem symbols based on such a theory results in a system that
proves the same L(T ) formulas as the Skolem-free system.

So far we have considered the effects of extending the full induction
schema by all Skolem symbols. We have concluded that not only is this
extension always sound but it is also conservative over the Skolem-free sys-
tem in a setting where Skolem functions are definable in all models and in
particular if the theory provides a well-order. We have left open the case
where there are models in which a Skolem function is not definable.

5 Restricted induction and Skolemization

In the previous section we have considered some high-level questions about
the soundness and conservativity of Skolemization in saturation theorem
proving with an unrestricted induction rule. In this section we will focus
on the role of Skolem symbols in the more practical setting corresponding
to the induction rule Γ-GINDR given in Definition 3.7, where Γ is a set of
formulas. We start by providing in Section 5.1 a representation as a logical
theory for sound and refutationally complete saturation systems extended
by the induction rule Γ-GINDR. After that we will make use of that char-
acterization in order to clarify the role of the Skolem symbols in saturation
systems extended by the rule Γ-GINDR mostly under the assumption that
Γ is Skolem-free. As already mentioned earlier, the restriction to a Skolem-
free Γ deviates from practical systems in which Γ may contain initial Skolem
symbols but not induction Skolem symbols. Nevertheless, studying the effect
of restricting the occurrences of all Skolem symbols in the induction schema
is an interesting theoretical question and allows us to better understand the
overall role of Skolem symbols.
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5.1 Representation as logical theory

We will now provide a preliminary representation as a logical theory for sound
and refutationally complete saturation systems extended by the induction
rule Γ-GINDR. We start by introducing some additional notions that will
be used throughout this section.

So far we have considered the traditional induction schema with induction
parameters. In the following we introduce a notation for induction without
induction parameters. Parameter-free induction schemata have been investi-
gated in mathematical logic [Ada87, KPD88, Bek97, CFM11, Jeř20], hence,
we adopt a similar notation.

Definition 5.1. Let Γ be a set of formulas, then the parameter-free induction
schema for Γ formulas Γ-IND− is given by Γ-IND− := {Ixγ | γ(x) ∈ Γ}.

The grounding operator given in the following definition allows us to
obtain all instances of a set of formulas obtained by replacing some of the
variables by ground terms.

Definition 5.2. Let Γ be a set of formulas and let L be a language. Then
we define

Γ ↓ L :=

{
γ(x⃗, t1, . . . , tn)

∣∣∣∣ γ(x⃗, z1, . . . , zn) ∈ Γ,

t1, . . . , tn are ground L terms

}
.

We can now introduce an operator corresponding to the rule Γ-GINDR.

Definition 5.3. Let T be a theory and Γ be a set of formulas.

Γ-GSI(T ) := T + sk∃((Γ ↓ T )-IND−).

We define Γ-GSIi(T ) as the i-fold iteration of the Γ-GSI(·) operation. Fi-
nally, we define Γ-GSIω(T ) :=

⋃
i<ω Γ-GSIi(T ).

It is straightforward to see that Γ-GSIω(·) characterizes a sound and refu-
tationally complete saturation-based proof system extended by the induction
rule Γ-GINDR.

Proposition 5.4. Let S be a sound and refutationally complete saturation-
based proof system and T be a theory. Then S+Γ-GINDR refutes CNF (sk∃(T ))
if and only if Γ-GSIω(sk∃(T )) is inconsistent.

Proof. Analogous to the proof of Proposition 4.4.

In Section 5.2 we will have a closer look at the role of the Skolem symbols
in such saturation systems.
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5.2 Induction parameters and Skolem symbols

The induction rule Γ-GINDR only generates parameter-free induction ax-
ioms, but on the other hand the generated induction axioms may con-
tain Skolem symbols whose role is not yet clear at this point. Thus, it
appears reasonable to begin by comparing sound and refutationally com-
plete saturation systems extended by the rule Γ-GINDR with the induction
schema Γ-IND−. In the setting of linear arithmetic with Γ := Open(T ) and
θ(x, y) := y + x = x → y = 0 we readily obtain an example where both
systems differ in strength.

Lemma 5.5. Let S be a sound and refutationally complete saturation system,
then S+Open(T )-GINDR refutes the clause set CNF (sk∃(T +¬(∀x)θ(x, x))).

Proof. By Proposition 5.4 it suffices to show the inconsistency of the theory

Open-GSI1(sk∃(T + ¬(∀x)θ(x, x))).

Let c := s(∀x)θ(x,x), then Open-GSI1(sk∃(T + ¬(∀x)θ)) ⊢ Ixθ(x, c). Hence
we now work in the theory Open-GSI1(sk∃(T + ¬(∀x)θ(x, x))) and proceed
by induction on x in the formula θ(x, c). For the base case it suffices to
see that c = c + 0 = 0 by (A4). For the induction step we assume that
c+ x = x → c = 0 and c+ s(x) = s(x). By (A5) we obtain s(c+ x) = s(x)
and therefore we obtain c + x = x. Hence c = 0 by the assumptions.
Therefore we now obtain θ(c, c) and ¬θ(c, c), that is, ⊥.

On the other hand we also have the following.

Lemma 5.6. T +Open(T )-IND− ̸⊢ θ(x, x).

The proof of Lemma 5.6 can be found in Appendix B and consists of the
elimination of the symbol p from induction formulas followed by the con-
struction of a model M. The domain of M consists of elements of the form
(b, i) ∈ {0, 1} × Z such that b = 0 implies i ∈ N. Furthermore, the symbol
0 is interpreted as the element (0, 0) and + is interpreted as the operation
(b1, n1) +

M (b2, n2) = (max{b1, b2}, n1 + n2). Hence, M ̸|= θ((1, 0), (1, 0)).

Remark 5.7. We clearly have T +Open(T )-IND ⊢ θ(x, x) by proceeding by
induction on x in the formula θ(x, y). Hence Lemma 5.6 is highly interesting
for AITP because it provides us with a simple formula that requires induction
on a syntactically more complex formula.
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The proof of Lemma 5.5 is reminiscent of the obvious proof of θ(x, x) in
the theory T +Open(T )-IND. Thus the proof suggest that the occurrences
of Skolem symbols in ground terms of the induction formulas provide some
of the strength of induction parameters. In the following we will confirm this
intuition (see Theorem 5.22).

We start by showing that the Skolem symbols appearing in the ground
terms of the induction axioms of Γ-GSIω(sk∃(T )) are not more powerful
than induction parameters. This is relatively straightforward because ground
terms can be abstracted by induction parameters. In particular, the ground-
ing operation given in Definition 5.2 is absorbed by parameterized induction.

Lemma 5.8. Let Γ be a set of formulas and L a language, then

Γ-IND ⊢ (Γ ↓ L)-IND.

Proof. Observe that ⊢ Ixφ(x, y⃗, z⃗) → Ixφ(x, y⃗, t⃗).

We have announced that this section deals mainly with the case where
the set of formulas Γ is Skolem-free. This corresponds to a saturation system
that also restricts the occurrences of the initial Skolem symbols. In practical
systems this is usually not the case, because the restriction mainly applies
to induction Skolem symbols. We briefly address this more general case in
the following lemma.

Lemma 5.9. Let L ⊇ L0 be a first-order language, T an L theory, and Γ a
set of L formulas, then

Γ-GSIω(T ) ⊑L L-SA + T + Γ-IND.

Proof. By the compactness theorem it clearly suffices to show that Γ-GSIn(T ) ⊑L

L-SA+T +Γ-IND for all n ∈ N. We proceed by induction on n and show the
slightly stronger claim that L-SA+Γ-GSIn(T )+Γ-IND ⊑L L-SA+T+Γ-IND,
for all n ∈ N. The base case is trivial since Γ-GSI0(T ) = T . For the induction
step we have

L-SA + Γ-GSIn+1(T )

=Def. 5.3 L-SA + Γ-GSIn(T ) + sk∃(Γ ↓ Γ-GSIn(T )-IND)

≡Prop. 2.14 L-SA + Γ-GSIn(T ) + Γ ↓ Γ-GSIn(T )-IND
≡Lem. 5.8 L-SA + Γ-GSIn(T ) + Γ-IND
⊑ind. hyp. L-SA + T + Γ-IND.
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We can now apply the above lemma to the case that is relevant for us in
order to show that allowing occurrences of Skolem symbols in ground terms
of induction formulas is not stronger than induction parameters.

Proposition 5.10. Let L be a Skolem-free first-order language, T an L
theory, and Γ a set of L formulas, then

Γ-GSIω(sk∃(T )) ⊑L T + Γ-IND.

Proof. Let L′ = L0∪L∪L(sk∃(T )), then by Lemma 5.9 we have Γ-GSIω(sk∃(T )) ⊑L′

L′-SA + sk∃(T ) + Γ-IND. By Proposition 2.14 we have L′-SA + sk∃(T ) +
Γ-IND ≡ L′-SA + T + Γ-IND. Since T + Γ-IND is Skolem-free, we have by
Proposition 2.15 L′-SA+T+Γ-IND ⊑L T+Γ-IND. Hence Γ-GSIω(sk∃(T )) ⊑L

T + Γ-IND.

In particular this shows that Γ-GSIω(sk∃(T )) is not refutationally stronger
than the theory T + Γ-IND.

Corollary 5.11. Let L be a Skolem-free first-order language, T an L theory,
and Γ a set of L formulas. If Γ-GSIω(sk∃(T )) is inconsistent, then T+Γ-IND
is inconsistent.

In the following we will show by a proof-theoretic argument that we even
have the converse, that is, ground Skolem terms behave in the refutational
setting exactly as induction parameters. Thus, we start by recalling the
necessary concepts from proof theory. We introduce a partially prenexed
form of the induction schema in which the strong quantifier of the induction
step is pulled into the quantifier prefix. Moving this quantifier into the
quantifier prefix will simplify the subsequent arguments.

Definition 5.12. Let γ(x, z⃗) be a formula, then we define the sentence I ′xγ
by

I ′xγ := (∀z⃗)(∃x)
(
(γ(0, z⃗) ∧ (γ(x, z⃗) → γ(s(x), z⃗))) → (∀w)γ(w, z⃗)

)︸ ︷︷ ︸
Jxγ(x,z⃗)

.

Let Γ be a set of formulas, then we define Γ-IND′ := {I ′xγ | γ(x, z⃗) ∈ Γ}.

This induction schema is clearly equivalent to the usual one given in
Definition 2.19.

Lemma 5.13. Γ-IND ≡ Γ-IND′.
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We will work with the following Gentzen system, which is essentially
a variant of the calculus G1c given in [TS00] with atomic logical axioms
extended by a cut rule and axioms for equality.

Definition 5.14. A sequent is an expression of the form Γ ⇒ ∆, where Γ
and ∆ are finite multisets of formulas.

Definition 5.15. The sequent calculus G consists of the following rules
Axioms:

Ax
A⇒ A

L⊥
⊥ ⇒

Refl
⇒ t = t

Eq
t = r,A[x/t] ⇒ A[x/r]

Rules for weakening, contraction, and cut:

Γ ⇒ ∆
LW

F,Γ ⇒ ∆

F, F,Γ ⇒ ∆
LC

F,Γ ⇒ ∆

Γ ⇒ ∆
RW

Γ ⇒ ∆, F

Γ ⇒ ∆, F, F
RC

Γ ⇒ ∆, F

Γ ⇒ ∆, F F,Λ ⇒ Π
Cut

Γ,Λ ⇒ ∆,Π

Rules for logical connectives:

Fi,Γ ⇒ ∆
L∧i, i = 0, 1

F0 ∧ F1,Γ ⇒ ∆

Γ ⇒ ∆, F Γ ⇒ ∆, G
R∧

Γ ⇒ ∆, F ∧G
F,Γ ⇒ ∆ G,Γ ⇒ ∆

L∨
F ∨G,Γ ⇒ ∆

Γ ⇒ ∆, Fi
R∨i, i = 0, 1

Γ ⇒ ∆, F0 ∨ F1

Γ ⇒ ∆, F G,Γ ⇒ ∆
L →

F → G,Γ ⇒ ∆

F,Γ ⇒ ∆, G
R →

Γ ⇒ ∆, F → G

F [x/t],Γ ⇒ ∆
L∀

(∀x)F,Γ ⇒ ∆

Γ ⇒ ∆, F [x/α]
R∀

Γ ⇒ ∆, (∀x)F
F [x/α],Γ ⇒ ∆

L∃
(∃x)F,Γ ⇒ ∆

Γ ⇒ ∆, F [x/t]
R∃

Γ ⇒ ∆, (∃x)F

where Γ,∆,Λ,Π stand for multisets of formulas, F,G stand for formulas, A
stands for atomic formulas, t, r stand for terms, and for R ∈ {L∀,R∃} the
variable α is called the eigenvariable of R and α does not occur freely in the
conclusion of R.
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We recall some important notions and properties of the calculus G. The
calculus G is sound and complete for first-order logic.

Lemma 5.16. Let φ be a sentence, then ⊢ φ if and only if there exists a G
proof of the sequent ⇒ φ.

Proof. See for example [TS00].

The calculus G has the following form of cut elimination.

Definition 5.17. In a cut inference the formula F is called the cut formula.
We say that a G proof is in atomic cut-normal form (ACNF, for short) if
all of its cut formulas are atomic.

Lemma 5.18. If a sequent Γ ⇒ ∆ is provable in G, then it has a G proof
in ACNF.

Proof. See [TS00].

Definition 5.19. The inference rules L∃ or R∀ are called strong quantifier
inference rules. Let π be a G proof, then by sqi(π) we denote the number of
strong quantifier inferences in π.

In the argument to follow the number of strong quantifier inferences of a
proof will be used as the induction measure.

Lemma 5.20. Let π be a G proof in ACNF of the sequent Π,Σ ⇒ ∆,Λ,
then there exists a proof π′ in ACNF of Π, sk∃(Σ) ⇒ sk∀(∆),Λ and sqi(π′) ≤
sqi(π).

Proof. We follow the ancestors of the formulas in Σ and ∆ in π and replace
eigenvariables of these ancestors by their respective Skolem terms.

Proposition 5.21. Let T be a theory with L0 ⊆ L(T ) and Γ a set of for-
mulas. If T + Γ-IND is inconsistent, then Γ-GSIω(sk∃(T )) is inconsistent.

Proof. Assume that T +Γ-IND is inconsistent, then clearly sk∃(T )+Γ-IND′

is inconsistent as well. Hence by Lemma 5.16 of G there exists a proof π in
ACNF of a sequent of the form Π, I ⇒, where Π is a finite subset of sk∃(T )
and I is a finite subset of Γ-IND′. Observe, furthermore, that we can assume
without loss of generality that the symbol 0 occurs in Π since L0 ⊆ L(T ).

Let µ be a proof in ACNF of a sequent of the form Σ, I ⇒ with Π ⊆
Σ ⊆ Γ-GSIω(sk∃(T )). We proceed by induction on the number of strong
quantifier inferences of µ in order to obtain a proof of a sequent Σ′ ⇒ where
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Σ′ ⊆ Γ-GSIω(sk∃(T )). If µ does not contain strong quantifier inferences,
then we obtain a proof of Σ ⇒ by permuting inferences on ancestors of
I downward. For the induction step assume that µ contains at least one
strong quantifier inference. Because µ does not contain non-atomic cuts, we
can permute quantifier inferences toward the bottom of the proof without
introducing any new strong quantifier inferences. Since Σ is free of strong
quantifiers any strong quantifier inference takes place on an ancestor of a
formula in I. Hence, by permuting a strong quantifier inference toward the
bottom of the proof µ, we obtain a proof ν with sqi(ν) ≤ sqi(µ) of the form

(ν ′(α))

Σ, Jxφ(α, t⃗), I ⇒
L∃

Σ, (∃x)Jxφ(x, t⃗), I ⇒
L∀∗

Σ, (∀z⃗)(∃x)Jxφ(x, z⃗), I ⇒
LC

Σ, I ⇒

where φ(x, z⃗) is a Γ formula and t⃗ is a vector of ground terms for which we
can assume without loss of generality that L(⃗t) ⊆ L(Σ). If t⃗ would contain
a symbol σ of I that does not already occur in Σ, then there is a formula
γ(x⃗) ∈ Γ containing σ and we introduce sk∃(Ixγ(0, . . . , 0)) into Σ by a left
weakening. Now we let

c := s(∀x)(φ(x,⃗t)→φ(s(x),⃗t)).

Then by substituting α by c in ν ′ we obtain a proof µ′ = ν ′(c) of the se-
quent Σ, Jxφ(c, t⃗), I ⇒. We have sqi(µ′) = sqi(ν ′) = sqi(ν) − 1. Then by
Lemma 5.20 there exists a proof µ′′ in ACNF of Σ, sk∃(Jxφ(c, t⃗)), I ⇒ with
sqi(µ′′) ≤ sqi(µ′). Now observe that sk∃(Jxφ(c, t⃗)) = sk∃(Ixφ(x, t⃗)). Finally,
we apply the induction hypothesis to µ′′′ in order to obtain the desired proof.

Now we finish by applying the above procedure to π in order to obtain
a proof of Σ ⇒ with Π ⊆ Σ ⊆ Γ-GSIω(sk∃(T )). By Lemma 5.16 it follows
that Γ-GSIω(sk∃(T )) is inconsistent.

We can summarize the results in the following proposition.

Proposition 5.22. Let L be a Skolem-free first-order language, T an L
theory with L0 ⊆ L(T ), and Γ a set of L formulas, then Γ-GSIω(sk∃(T )) is
inconsistent if and only if T + Γ-IND is inconsistent.

Proof. An immediate consequence of the propositions 5.10 and 5.21.
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The above result shows that in a refutational setting allowing Skolem
symbols to appear in ground terms of induction formulas corresponds exactly
to induction with parameters. This confirms our initial intuition that Skolem
symbols in ground terms behave like induction parameters. We can rephrase
the result of Proposition 5.22 as follows.

Theorem 5.23. Let L be a Skolem-free first-order language, T an L theory,
Γ a set of L formulas, φ an L formula such that L0 ⊆ L(T ) ∪ L(φ), and S
a sound and refutationally complete saturation system. Then S +Γ-GINDR

refutes CNF (sk∃(T + ¬φ)) if and only if T + Γ-IND ⊢ φ.

We have thus obtained a Skolem-free characterization of a sound and
refutationally complete saturation-based proof system with the induction
rule Γ-GINDR. We conclude this section with a question about a general-
ization of Theorem 5.23.

Question 5.24. Consider again the situation of Lemma 5.9, where we have
shown that Γ-GSIω(T ) is L conservative over L-SA+T+Γ-IND where L ⊇ L0

is a first-order language, T an L theory, and Γ a set of L formulas. This
gives rise to the question whether we can characterize a system that allows
initial Skolem symbols to occur in the induction formulas without restriction,
but restricts the occurrences of induction Skolem symbols in an analogous way
to Proposition 5.21. In particular, is Γ-GSIω(T ) inconsistent if and only if
L-SA + T + Γ-IND is inconsistent?

6 Unprovability

In the previous sections we have studied two forms of induction rules oc-
curring in saturation-based induction provers. In particular we were able to
give a Skolem-free characterization as a logical theory of the induction rule
Γ-GINDR where Γ is a set of Skolem-free formulas. In this section we will
make use of this result in order to provide concrete unprovability results for
saturation systems that make use of this induction rule. In Section 6.1 we
will provide unprovability results for saturation-based systems that are based
on the induction rule Open(L)-GINDR, where L stands for the language of
the initial clause set. Then in Section 6.2 we show that the concrete methods
described in [RV19, HHK+20] belong to this family and that therefore we
obtain unprovability results for these methods.
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6.1 Open induction

The setting of linear arithmetic described in Section 2.3 proves to be a source
of very simple and practically relevant unprovability examples. We make use
of an elegant characterization proved by Shoenfield [Sho58].

Definition 6.1. By T ′ we denote the theory having the axioms of T together
with the axioms

x ̸= 0 → x = s(p(x)), (B1)
x+ y = y + x, (B2)

(x+ y) + z = x+ (y + z), (B3)
x+ y = x+ z → y = z. (B4)

Theorem 6.2 (Shoenfield [Sho58]). T ′ ≡ T +Open(T )-IND.

The following formulas were already studied by Shoenfield in [Sho58].
Their interesting relation to the theory T ′ will be crucial for our unprovability
results.

Definition 6.3. Let m and n be natural numbers, then we define

Cm := (∀x, y)(m · x = m · y → x = y)

Dm,n := (∀x, y)(sn(m · x) ̸= m · y).

The proof of [Sho58, Theorem 2] given by Shoenfield can be seen to show
that T + Open(T )-IND does not prove any of the formulas Cm and Dm,n

with 0 < n < m.

Lemma 6.4 ([Sho58]). Let 0 < n < m, then

• T +Open(T )-IND ̸⊢ Cm;

• T +Open(T )-IND ̸⊢ Dm,n.

We have now everything at hand to formulate the unprovability result.

Definition 6.5. Let m,n ∈ N, then the clause sets Xm and Ym,n are given
by

Xm := CNF (sk∃(T ′ + ¬Cm)),
Ym,n := CNF (sk∃(T ′ + ¬Dm,n)).
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Theorem 6.6. Let S be a sound saturation system and C ∈ {Xm,Ym,n | 0 <
n < m}, then S +Open(L(C))-GINDR does not refute the clause set C.

Proof. We consider the case for C = Xm with 1 < m. The other case is
treated analogously. Proceed indirectly and assume that S+Open(L(Xm))-GINDR

refutes Xm. Then by Lemma 5.9 we have

L(T )-SA + sk∃(T ′) + Open(L(Xm))-IND ⊢ sk∀(Cm)

First of all, observe that sk∃(T ′) = T ′. By applying Proposition 2.14 we
obtain

L(T )-SA + sk∃(T ′) + Open(L(Xm))-IND ⊢ Cm.

Now observe that since L(Xm) extends L(T ) only by constants, we have
Open(L(Xm)) = Open(L(T )) ↓ L(Xm) and therefore by Lemma 5.8 we
obtain

L(T )-SA + T ′ +Open(L(T ))-IND ⊢ Cm.

Hence, T ′, Open(L(T ))-IND and Cm are Skolem-free, thus, we can apply
Proposition 2.15 to obtain

T ′ +Open(L(T ))-IND ⊢ Cm.

By Theorem 6.2 we furthermore obtain T + Open(L(T ))-IND ⊢ Cm. This
contradicts Lemma 6.4.

This result begs the question which features a system needs in order to
prove the sentences Cm and Dm,n for 0 < n < m. In the following we briefly
mention some extensions of the open induction schema that would allow us
to overcome our unprovability results. The extensions we suggest are purely
theoretical in the sense that we do not take into account whether they can be
implemented efficiently in a saturation system. A possible extension follows
from a remark by Shoenfield [Sho58] that Cm and Dm,n with 0 < n < m can
be proved with parameterized double induction (also known as simultaneous
induction) on open formulas.

Definition 6.7. Let γ(x, y, z⃗) be a formula, then the formula Ĩ(x,y)γ is given
by

((∀x)γ(x, 0, z⃗) ∧ (∀y)γ(0, y, z⃗) ∧ (∀x, y)(γ(x, y, z⃗) → γ(s(x), s(y), z⃗)))

→ (∀x, y)γ(x, y, z⃗).

Let Γ be a set of formulas, then the double induction schema Γ-IND2 for Γ
formulas is given by Γ-IND2 := {(∀z⃗)Ĩ(x,y)γ | γ(x, y, z⃗) ∈ Γ}.
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Lemma 6.8. Let m,n ∈ N with 0 < n < m, then

(i) T +Open(T )-IND2 ⊢ Cm;

(ii) T +Open(T )-IND2 ⊢ Dm,n.

Proof. Straightforward.

The second possibility is to extend the induction rule used by the system
at least to ∀1 formulas without parameters.

Lemma 6.9. Let m,n ∈ N with 0 < n < m, then

(i) T + ∀1(T )-IND− ⊢ T ′;

(ii) T + ∀1(T )-IND− ⊢ Cm;

(iii) T + ∀1(T )-IND− ⊢ Dm,n.

Proof. The proof of (i) is left as an exercise. For (ii) we work in T +
∀1(T )-IND− and proceed by induction on the formula (∀y)(m · x = m · y → x = y).
For the base case we have to show that m·0 = m·y → 0 = y. By Lemma 2.23
we have m · 0 = 0. By (B1) we need to distinguish two cases. If y = 0, then
we are done, otherwise we obtain a contradiction by (A1). For the induction
step we assume (∀y)(m · x = m · y → x = y) and m·s(x) = m·y. We want to
obtain s(x) = y. By (A5) and (B2) we obtain sm(m·x) = m·s(x) = m·y. By
(B1) we can distinguish two cases. If y = 0, then by 2.23 we sm(m · x) = 0,
which contradicts (A1). Hence by Lemma 2.22 we have m · x = m · p(y)
and it suffices to show x = p(y). By the induction hypothesis we have
m · x = m · p(y) → x = p(y). Thus we obtain x = p(y).

For (iii) we proceed analogously.

Shoenfield has shown the following interesting theorem.

Theorem 6.10 ([Sho58]). T ′ + {Cm | 1 < m} + {Dm,n | 0 < n < m} is
complete for quantifier-free formulas.

From this it follows that at least in the setting of linear arithmetic double
induction and parameter-free ∀1 induction are sufficient to prove all true
quantifier-free formulas.

In a similar way to what we did in this section we obtain many more
unprovability results by using independence results of Shepherdson [She64]
and Schmerl [Sch88]. However, these results are formulated in the language
that besides the symbols of linear arithmetic contains the symbols −̇/2 and
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·/2 for the truncated subtraction and multiplication, respectively. The prop-
erties that are shown independent of the base theory with open induction
express slightly more complicated properties such as the irrationality of the
square root of two, Fermat’s last theorem for n = 3, and similar diophantine
equations. Hence, these independence results are currently less practically
realistic.

6.2 Literal induction: a case study

In the previous section we have provided unprovability results for sound
saturation systems that are extended by the rule Open(L)-GINDR, where
L is a Skolem-free language. In this section we will show that these results
apply to the concrete systems described in [RV19, HHK+20].

In [RV19] Reger and Voronkov describe an AITP system that extends a
sound saturation-based proof system by the induction rule

{l(a) ∨ C} ∪ C
Literal-AINDR

1
CNF (¬sk∀(l(0) ∧ (∀x)(l(x) → l(s(x))))) ∨ C

where a is a constant, l(x) is a literal free of a, and l(a) ground. We in-
formally refer to this induction rule as the first analytical literal induction
rule. Basically, this induction rule operates as follows: Whenever a clause
of the form l(a) ∨ C is encountered, then the rule generates the clauses cor-
responding to the induction axiom Ixl(x) and immediately resolves these
against l(a) ∨ C. In a practical implementation the rule will not apply to
every clause of the form l(a) ∨ C but only when some additional conditions
are satisfied. We call this induction rule analytical because an induction is
carried out only for literals that actually are generated during the satura-
tion process. The motivation for choosing the very restricted induction rule
Literal-AINDR

1 is to solve problems that require “little” induction reasoning
and complex first-order reasoning [RV19]. In particular the induction rule
is chosen so as to not generate too many clauses, which otherwise would
potentially result in performance issues. Empirical observations [HHK+20],
however, suggest that this method is unable to deal even with very simple
yet practically relevant problems such as

x+ (x+ x) = (x+ x) + x.

In order to relax the overly restricting analyticity, [HHK+20] introduces the
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following induction rule:

{l(a) ∨ C} ∪ C
Literal-AINDR

2
CNF (¬sk∀ (l(0) ∧ (∀x)(l(x) → l(s(x))))) ∨ C

where l(x) is a literal, a is a constant such that l(a) is ground. This rule
reduces the degree of analyticity by allowing induction to be carried out on
slight generalizations of the currently derived literals. This results in more
possibilities to add induction axioms to the search space and thus makes
search more difficult, but the degree of analyticity of the induction is reduced
sufficiently to make the method able to prove some challenging formulas such
as for example x+(x+x) = (x+x)+x (See [HHK+20] for details). It is clear
that the rule Literal-AINDR

2 is at least as strong as the rule Literal-AINDR
1 .

Hence we will in the following concentrate on the rule Literal-AINDR
2 .

In the next step we will show how the induction rule Literal-AINDR
2

can be expressed in terms of the restricted induction rule given in Definition
3.7. The proof proceeds in three steps: First we extract the induction axioms
that are introduced with Literal-AINDR

2 ; secondly, we derive these induction
axiom with the induction rule of Definition 3.7; finally, we use first-order
inferences to reconstruct a refutation.

Lemma 6.11. Let S be a sound saturation system and D0, . . . ,Dn and S +
Literal-AINDR

2 deduction. There exist L(D0) literals

(li(x, c1, . . . , ci−1))i=1,...,k ,

where n < k and cj = s(∀x)(lj(x,c1,...,cj−1)→lj(s(x),c1,...,cj−1)) for 0 < j ≤ k, such
that L(Dn) ⊆ L(D0) ∪ {c1, . . . , ck} and

D0 ∪ sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k}) |= Dn.

Proof. We start with a straightforward observation. Since the induction
rule Literal-AINDR

2 introduces only nullary Skolem symbols, every literal
appearing in an S+Literal-AINDR

2 deduction from D0 is of the form l(x⃗, c⃗),
where c⃗ is a vector of induction Skolem symbols and L(l(x⃗, y⃗)) ⊆ L(D0).

Now let us proceed by induction on the length n of the deduction from
D0. If n = 0, then clearly we are done. Now assume that the claim holds
up to Dn and consider Dn+1. If Dn+1 is derived by from Dn by an infer-
ence from S, then by the soundness of S we have L(Dn+1) ⊆ L(Dn) and
Dn |= Dn+1. Hence, we are done by applying the induction hypothesis to
Dn. If Dn+1 is derived from Dn by Literal-AINDR

2 , then Dn contains a
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clause l(a, c1, . . . , ck) ∨C and Dn+1 = Dn ∪CNF (sk∃(Ixl(x, c1, . . . , ck)) and
moreover L(Dn) ⊆ L(D0)∪{1, . . . , n}. We let lk+1(x, y⃗) := l(x, y⃗) and ck+1 =
s(∀x)(lk(x,c1,...,ck)→lk(s(x),c1,...,ck)). Hence we have Dn∪{sk∃(Ixlk+1(x, c1, . . . , ck))} |=
Dn+1 and L(Dn+1) = L(Dn)∪{ck+1}. Therefore, we have k+1 < n+1 and
L(Dn+1) ⊆ L(D0) ∪ {c1, . . . , ck+1} and

D0 ∪ sk∃ ({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k + 1}) |= Dn+1.

Proposition 6.12. Let S be a sound and refutationally complete saturation
system and T a theory. If S + Literal-AINDR

2 refutes CNF (sk∃(T )), then
the saturation system S +Literal(L(sk∃(T )))-GINDR refutes CNF (sk∃(T )).

Proof. Assume that S+Literal-AINDR
2 refutes CNF (sk∃(T )), then by Lemma 6.11

we obtain k ∈ N and literals li(x, c1, . . . , ci−1) such that L(li(x, y⃗)) ⊆ L(sk∃(T ))
i = 1, . . . , k. Moreover we have

CNF (sk∃(T )) ∪ sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k}) |= □.

Now we start with the clause set CNF (sk∃(T )) and repeatedly apply the
induction rule Literal(L(sk∃(T )))-GINDR to derive the clause sets

Dm = CNF (sk∃(T )) ∪ CNF (sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ m})),

for m = 1, . . . , k. As shown above, this clause set Dk is inconsistent, hence,
by the refutational completeness of S we obtain a refutation E0, . . . , En from
Dk. Hence the sequence (D1, . . . , Dk, E1, . . . , En) is a S+Literal(sk∃(T ))-GINDR

refutation of CNF (sk∃(T )).

As an immediate consequence, we can transfer the previously established
unprovability results to the concrete method described in [RV19, HHK+20].

Theorem 6.13. Let S be a sound and refutationally complete saturation
system, then the system S + Literal-AINDR

2 does neither refute the clause
set Xm nor the clause set Ym,n for 0 < n < m.

Proof. We consider the case for the clause set Xm with 1 < m. The other
case is analogous. Suppose that S + Literal-AINDR

2 refutes Xm, then by
Proposition 6.12 the saturation system S + Literal(L(Xm))-GINDR refutes
Xm. This contradicts Theorem 6.6.

Theorem 6.13 gives us a family of simple and practically relevant clause
sets that cannot be proved by the calculi presented in [RV19, HHK+20].
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Let us now briefly discuss these results. A possible source of criticism for
Theorem 6.13 may be that the underlying independence results (Lemma 6.4)
are overly strong. That is they do not exploit the restriction of the induction
to literals, but instead rely on the fact that the sentences Cm and Dm,n with
0 < n < m are already unprovable with induction for all quantifier-free
formulas. We can address this point by the following results.

Lemma 6.14. The theory T + Literal(T )-IND proves B1–B4.

Proof. Proving B2 and B3 is straightforward. For B4 we show the contra-
positive y ̸= z → x+ y ̸= x+ z. We assume y ̸= z and proceed by induction
on x in the formula x + y ̸= x + z. For the base case we have to show
0 + y ̸= 0 + z. By B2 and the definition of + the formula 0 + y ̸= 0 + z
is equivalent to y ̸= z which we have assumed. For the induction step we
assume s(x) + y ̸= s(x) + z. By B2 and A5 we obtain s(x + y) ̸= s(x + z),
hence x+ y ̸= x+ z and we are done.

Proving B1 is slightly more complicated because the induction interacts
even more with the context. We assume x ̸= 0 and we have to show x =
s(p(x)). We proceed by induction on y in the formula x ̸= y. The induction
base is trivial since we have assumed x ̸= 0. For the induction step we
assume x ̸= y0 and we have to show x ̸= s(y0). Hence we assume x =
s(y0). Now we have s(p(x)) = s(p(s(y0))) = s(y0) = x and we are done.
Therefore we obtain the formula (∀y)x ̸= y and in particular x ̸= x, which
is a contradiction. Hence we obtain x = s(p(x)).

In the light of Shoenfield’s theorem it is now clear that induction for
literals is as powerful as quantifier-free induction.

Proposition 6.15. T + Literal(T )-IND ≡ T +Open(T )-IND.

Proof. The direction from right to left is obvious. For the direction from left
to right follows from Lemma 6.14 and Shoenfield’s Theorem (Theorem 6.2).

The underlying independence results are therefore not too strong and it
is not possible to improve the result by taking into account the restriction of
the induction to literals. The result may also be interesting from a practical
point of view, because induction for literals is much easier to implement
efficiently than induction for quantifier-free formulas. It would therefore be
interesting to investigate under which conditions induction for quantifier-free
formulas collapses to induction for literals. However, we believe that there
are practically relevant theories in which the induction schema for literals is
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strictly weaker than the induction schema for quantifier-free formulas. Such a
theory could allow us to provide unprovability results that give a motivation
for the development of stronger induction mechanisms.

Another possible source of criticism is that our results focus on abstrac-
tions that are quite far from practical reality. Most importantly, we do not
exploit the fact that the induction rules Literal-AINDR

i (i = 1, 2) attempt
induction only for literals of which an instance of the dual literal occurs in
the derived clauses. Selecting the induction literals in this way seems to
be a strong theoretical and practical restriction. However, this restriction
is crucial for current practical systems because it permits an efficient op-
eration of the prover. In practice, the restriction is usually weakened by
the usage of heuristics for the selection of induction formulas [HHK+20].
Another promising method for discovering induction formulas is introduced
in [CJRS13, VJ15], but it is unclear how to integrate this efficiently into a
saturation-based system. We currently do not have a candidate clause set
that exploits the way in which Literal-AINDR

i (i = 1, 2) select induction
literals, but we plan to investigate this restriction in the future.

On the other hand, working with high-level abstractions allows us to ob-
tain results that are robust against minor refinements of the induction rule
from [RV19] such as the refinement proposed in [HHK+20]. Moreover, the
underlying independence results together with Lemmas 6.8 and 6.9 suggest
natural, yet not necessarily practical, extensions of the induction rule by
allowing simultaneous induction on multiple variables or by allowing quan-
tification inside the induction formula.

7 Conclusion, Future Work, and Remarks

In this article we have analyzed a commonly used design principle for the
integration of induction into saturation systems that has recently received
increased interest [KP13, Ker14], [Cru15, Cru17], [Wan17], [EP20], [RV19,
HHK+20].

In Section 4, we have considered a general framework for induction over
natural numbers in saturation-based provers that extend the language by
Skolem symbols. By reducing this induction mechanism to a logical theory
(see Theorem 4.11), we have shown that in many relevant cases extending
the language of the induction schema by Skolem symbols does not grant any
additional power (see Proposition 4.21). Furthermore, we have considered, in
Section 5, an induction rule that restricts occurrences of Skolem symbols to
ground terms according to similar restrictions observed in practical systems.
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We have shown that under this restriction Skolem symbols correspond to
induction parameters (see Theorem 5.22). Finally, in Section 6, we have used
the results from Section 5 and independence results from the literature on
mathematical logic to obtain some practically relevant unprovability results
for the systems described in [RV19, HHK+20] (see Theorem 6.13).

We plan to continue the work on induction in saturation-based theorem
proving by analyzing the methods developed by Cruanes [Cru15, Cru17],
Wand [Wan17] and Echenim and Peltier [EP20]. We are particularly in-
terested in Cruanes’ method because its mode of operation is very similar
to the methods described in [RV19, HHK+20]. We suspect that under rea-
sonable assumptions, the induction in Cruanes’ system corresponds to the
restricted induction rule (see Definition 3.7) over ∀1 formulas. Furthermore,
Cruanes’ method also allows induction on several formulas simultaneously
and introduces definitions by the AVATAR splitting mechanism [Vor14].

Furthermore the work in this article has given rise to a number of ques-
tions that we hope to address in the future. In Section 4 we have established
some very coarse results concerning the conservativity of extensions of the
language of the induction formulas by Skolem symbols. In particular we
have shown that in many relevant cases extending the induction schema by
Skolem symbols does not result in a more powerful system. We have however
left open the general case (see Question 4.14). This question is not proper
to induction but is part of a more general question concerning the exten-
sion of the language of an axiom schema by Skolem symbols. In Section 5
we have mainly considered the case where the occurrences of all Skolem
symbols in the induction formulas are subject to the restriction mentioned
above. Practical systems only impose this restriction on Skolem symbols
that are generated by the induction rule. We have left open the question
about a characterization of these systems (see Question 5.24). Finally, it
seems worthwhile to investigate the effects of the analyticity properties of
induction rules used in concrete systems such as [RV19, HHK+20] and their
interaction with redundancy rules.
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A Appendix

This section provides a proof of Proposition 4.17 and all the related lemmas.
The proof essentially proceeds by replacing each occurrence of a Skolem sym-
bol by its definition. We start by showing that we can isolate the occurrences
of a given function symbol.
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Lemma A.1. Let φ(z⃗) be a formula and f a function symbol. Then there
exists a formula ψ(z⃗) such that ⊢ φ(z⃗) ↔ ψ(z⃗) and f occurs in ψ only in
subformulas of the form x = f (⃗t), where t⃗ is free of f .

Proof. We exhaustively apply the equivalence from left to right

⊢ φ(⃗t(u))) ↔ (∀x)(x = u→ φ(⃗t(x))),

where x does not occur freely in φ(⃗t(u)). It is straightforward to see that the
logical equivalence of the formula so obtained is preserved and furthermore
this transformation terminates because the overall nesting depth of f strictly
decreases.

After isolating a function symbol and assuming that it has a definition
we can simply replace all the occurrences by its definition.

Lemma A.2. Let M be an L structure, ψ(x⃗, y) be an L formula such that
M |= (∃!y)ψ(x⃗, y). Let furthermore f be a function symbol and φ(z⃗) an
L ∪ {f} formula. Let M ′ := M ∪ {f 7→ fψ}, where fψ (⃗a) = b with b ∈ |M |
the only choice so that M |= ψ(⃗a, b). Then there exists an L formula θ(z⃗)
such that M ′ |= φ(z⃗) ↔ θ(z⃗).

Proof. This is easily seen by first observing that M ′ |= f(x⃗) = y ↔ ψ(x⃗, y).
Now apply Lemma A.1 to φ in order to obtain a formula in which f occurs
only as subformulas of the form y = f (⃗t) with t⃗ free of f and replace these
occurrences with ψ(⃗t, y). Clearly the resulting formula is equivalent to φ in
M ′.

The assumption that a model has definable Skolem functions only pro-
vides us with definitions for Skolem symbols of L formulas. The definitions
for other Skolem symbols that are introduced at later stages need to be
constructed based on the definitions for symbols of lower stages.

Lemma A.3. Let L be a Skolem-free first-order language and M an L struc-
ture with definable Skolem functions. Then there exists an expansion M ′ of
M to skω(L) such that M ′ |= L-SA and for each Skolem symbol f of skω(L)
then fM

′ is L definable in M ′.

Proof. We show by induction on i ∈ N that there is an expansion Mi

of M to the language sk i(L) such that for each Skolem symbol f/m of
sk i(L) there exists a formula ψf (x⃗, y) such that Mi |= f(x1, . . . , xm) = y ↔
ψf (x1, . . . , xm, y). The base case with i = 0 is trivial. For the induction step
we assume the claim for i and consider the case for i+1. Let f := s(Qy)φ(y,x⃗)
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be a Skolem symbol of sk i+1(L), that does not belong to sk i(L). Let g1/k1,
. . . , gn/kn be the Skolem symbols occurring in the formula φ. Then clearly gj
belongs to sk i(L) for all j = 1, . . . , n. By the induction hypothesis there exist
L formulas ψgj (x⃗j) such thatMi |= gj(x1, . . . , xkj ) = y ↔ ψgi(x1, . . . , xkj , y),
for j = 1, . . . , n. Then by repeated application of Lemma A.2 to the formula
φ, there exists an L formula ψf (x⃗, y) such that Mi |= φ(x⃗, y) ↔ ψf (x⃗, y).
Since ψf is an L formula, M has definable Skolem functions, there exists a
function h : |M |k → |M | and an L formula δh(x⃗, y) such that h is defined
in M by δh and M |= (∃y)ψf (x⃗, y) → ψf (x⃗, h(x⃗)). We set fMi+1 := h,
then we have Mi+1 |= f(x⃗) = y ↔ δh(x⃗, y). It remains to show that
Mi+1 satisfies the Skolem axiom for f . Suppose we have Mi |= (∃y)φ(d⃗, y),
then we have Mi |= (∃y)ψf (d⃗, y). Hence Mi+1 |= ψf (d⃗, h(d⃗)) and therefore
Mi+1 |= φ(d⃗, f(d⃗)). Hence Mi+1 |= (∃y)φ(x⃗, y) → φ(x⃗, f(x⃗)). Finally, we
obtain M ′ by M ′ :=

⋃
i≥0Mi.

Proving Proposition 4.17 is now just a matter of replacing Skolem sym-
bols in induction formulas by their definitions.

Proof of Proposition 4.17. Let φ be an L formula such that T + L-SA +
skω(L)-IND ⊢ φ. We proceed indirectly and assume T + L-IND ̸⊢ φ. Then
there exists a model M of T+L-IND such that M ̸|= φ. By Lemma A.3 there
exists an expansion M ′ of M to skω(L) such that M ′ |= L-SA and for every
Skolem symbol f there exists an L formula δf (x⃗, y) such that M ′ |= f(x⃗) =
y ↔ δf (x⃗, y). Let θ(x, z⃗) be an skω(L) formula and consider the induction
axiom Ixθ(x, z⃗). By Lemma A.2 there exists an L formula θ′(x, z⃗) such
that M ′ |= θ(x, z⃗) ↔ θ′(x, z⃗). Hence we have M ′ |= Ixθ(x, z⃗) ↔ Ixθ

′(x, z⃗).
Since M |= L-IND, we have M ′ |= Ixθ(x, z⃗). Hence M ′ |= skω(L)-IND and
therefore M ′ |= T + L-SA + skω(L)-IND but M ′ ̸|= φ. Contradiction!

B Appendix

In this section we provide a model theoretic proof of Lemma 5.6. The diffi-
culty consists in showing that a given structure satisfies the induction schema
Open(L(T ))-IND−. In order to address this problem we start by simplifying
the language of the induction schema (see Proposition B.6). By L′ we denote
the language L(T ) without p.
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Lemma B.1. The theory T + Open(L(T ))-IND− proves the following for-
mulas

x = 0 ∨ x = s(p(x)). (7)

x+ k = k + x (8)

x+ k + 1 ̸= x, (9)

for all k ∈ N.

Next we show that whenever a p-free term contains a free variable x,
then whenever the variable x is substituted for s(x), we can propagate one
occurrence of the successor function to the root of the term.

Lemma B.2. Let t(x) be a non-ground p-free term, then there exists a p-free
term t′(x) such that T ⊢ t(s(x)) = s(t′(x)).

Proof. We proceed by induction on the structure of the term t. If t = x,
then we are done by letting t′ = t. If t = s(u(x)), then u is non-ground
and p-free. We let t′ = u(s(x)), then we have T ⊢ t(s(x)) = s(u(s(x))) =
s(t′(x)). If t = u1 + u2, then we have to consider two cases depending on
whether u2 is ground. If u2 is not ground, then by the induction hypothesis
there exists u′2 such that T ⊢ u2(s(x)) = s(u′2(x)). Then we have T ⊢
u1(s(x)) + u2(s(x)) = u1(s(x)) + s(u′2(x)) = s(u1(s(x)) + u′2(x) and we
set t′ = u1(s(x)) + u′2. If u2 is ground, then u1 is non-ground and by the
induction hypothesis there exists u′1 such that T ⊢ u1(s(x)) = s(u′1(x)). We
have T ⊢ t(s(x)) = u1(s(x)) + u2 = s(u′1(x)) + k = s(sk(u′1(x))), hence we
choose t′ = sk(u′1).

Now we will show that given a term t(x), we can eliminate the occurrences
of p in t(sN (x)) when N is large enough.

Lemma B.3. Let t(x) be a term, then there exists N ∈ N and a p-free term
t such that T ⊢ t(sN (x)) = t′.

Proof. If t is a ground term, then we have T ⊢ t = k for some k and
we let t′ = k and N = 0. If t = x, then we let N = 0 and t = t′.
If t = s(u), where u is a term, then by the induction hypothesis there
exists N ′ and a p-free u′ such that T ⊢ u(sN

′
(x)) = u′. Hence we have

T ⊢ t(sN (x)) = s(u(sN (x))) = s(u′). Thus we let N := N ′ and t′ = s(u′).
If t = p(u), then by the induction hypothesis we have some N ′ and a p-
free u′ such that T ⊢ u(sN

′
(x)) = u′. Hence by Lemma B.2 we have T ⊢

p(u(sN
′+1(x))) = p(u′(s(x))) = p(s(u′′)) = u′′, for some p-free term u′′ and
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we let N := N ′ + 1 and t′ = u′′. If t = u1 + u2, then by the induction
hypothesis there exists for i ∈ {1, 2} a natural number Ni and a p-free term
u′i such that T ⊢ ui(s

Ni(x)) = u′i. Let N = max{N1, N2}, then we have
T ⊢ t(sN (x)) = u1(s

N (x)) + u2(s
N (x)) = u′1(s

N−N1(x)) + u′2(s
N−N2(x)),

thus we let t′ = u′1(s
N−N1(x)) + u′2(s

N−N2(x)).

Lemma B.4. Let φ(x) be a formula, then there exists N ∈ N and a p-free
formula φ′(x) such that T ⊢ φ(sN (x)) ↔ φ′.

Proof. Let θ an atom, then θ is of the form t1 = t2, then apply Lemma B.3
twice in order to obtain N1, N2 and the p-free terms t′1(x) and t′2(x). Now
let N := max{N1, N2} and observe that T ⊢ θ(sN (x)) ↔ t′1(s

N−N1(x)) =
t′2(s

N−N2(x)).
Let θ1(x), . . . , θn(x) be all the atoms of φ. Let i ∈ {1, . . . , n}, then apply

the argument above to θi in order to obtain a natural number Mi and a p-free
atom θ′i such that T ⊢ θ(sMi(x)) ↔ θ′i. Let M = max{Mi | i = 1, . . . , n} and
obtain φ′ by replacing in φ(sM (x)) every atom θi(s

M (x)) by θ′i(s
M−Mi(x)).

Clearly we have T ⊢ φ(sM (x)) ↔ φ′.

We can now “factor” the symbols p out of the induction schema. The
idea is instead of starting the induction at 0 we start the induction at some
N ∈ N that is large enough, so that we can eliminate p according to the
lemma above.

Lemma B.5. T + (B1) +Open(L′)-IND− ⊢ Open(T )-IND−.

Proof. Let φ(x) be an L(T ) formula. We want to show Ixφ(x). By Lemma B.4
above we obtain an N ∈ N and a p-free formula ψ such that T ⊢ φ(sN (x)) ↔
ψ(x). Now we work in T + (B1) + Open(L′)-IND− and assume φ(0) and
φ(x) → φ(s(x)) and we want to show φ(x). Hence by a N − 1 fold ap-
plication of Lemma (B1) it suffices to show φ(0), φ(1), . . . , φ(sNpN (x)).
By starting with φ(0) and iterating φ(x) → φ(s(x)) we obtain φ(n) for all
n ∈ N. Hence it remains to show φ(sN (pN (x))). We proceed by induction on
ψ. For the induction base we have to show ψ(0) which is equivalent to φ(N),
hence we are done. For the induction step we assume ψ(x) and we have to
show ψ(s(x)). We have ψ(x) ↔ φ(sN (x)) and by (∀x)(φ(x) → φ(s(x))) we
obtain φ(sN (x)) → φ(sN+1(x)) thus by modus ponens φ(sN+1(x)) which
is equivalent to ψ(s(x)). This completes the induction step. By the induc-
tion we thus obtain ψ(x), and in particular ψ(pN (x)) which is equivalent to
φ(sNpN (x)). This completes the proof.

As an immediate consequence of the above lemma we can factor all the
occurrences of p/1 in the induction formulas into a single axiom.
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Proposition B.6. T +Open(L(T ))-IND− ≡ T + (B1) +Open(L′)-IND−.

Over Z p-free atoms in one variable represent equations between two
linear functions as can be easily seen. Linear functions have the nice property
that either they coincide everywhere or else they intersect in at most one
point. This property of linear functions allows us to analyze the truth values
of a quantifier-free formula in one point. The idea is that this property allows
us to define a radius, beyond which an atom behaves on the positive integers
just like on the negative integers. We will now define an L(T ) structure that
has an analogous property.

Definition B.7. Let M be the L(T ) structure whose domain is the set of
pairs (b, n) ∈ {0, 1} × Z such that b = 0 implies n ∈ N and that interprets
the function symbols 0, s, p, and + as follows

0M = (0, 0),

sM((b, n)) = (b, n+ 1),

pM((0, n)) = (0, n −̇ 1),

pM((1, n)) = (1, n− 1),

(b1, n1) +
M (b2, n2) = (max{b1, b2}, n1 + n2),

where b, b1, b2 ∈ {0, 1} and n, n1, n2 ∈ N.

It is clear that the structure M is indeed an L(T ) structure.

Lemma B.8. M |= T + (B1).

Proof. The element 0M clearly has no predecessor. Furthermore pM0M =
(0, 0) = 0M. We have pM(sM(b, n))) = (b, n). Moreover (b, n) +M (0, 0) =
(b, n) and

(b1, n1) +
M sM((b2, n2)) = (b1, n1) +

M (b2, n2 + 1)

= (max{b1, b2}, n1 + n2 + 1) = sM((max{b1, b2}, n1 + n2))

= sM((b1, n1) +
M (b2, n2)).

Finally, observe that every element that is not 0M has a predecessor.

Lemma B.9. Let t(x) be a p-free term containing the variable x, then

tM((b, n)) = (b, tZ(n)). (10)
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Proof. We proceed by induction on the structure of the term t. If t is the
variable x, then tM(b, n) = (b, n) = (b, tZ(n)). If t = t1+ t2, then either t1 or
t2 is not ground. If t1 contains x and t2 does not contain x, then we have by
the induction hypothesis tM1 (b, n) = (b, tZ1 (n)) and tM2 (b, n) = (0, tN2 ). Hence
tM(b, n) = (b, tZ1 (n) + tN2 ) = (b, tZ(n)). If both t1 and t2 contain x, then
we have by the induction hypothesis tM1 (b, n) = (b, tZ1 (n)) and tM2 (b, n) =
(b, tZ2 (n)). Hence tM(b, n) = (b, tZ1 (n) + tZ2 (n)) = (b, tZ(n)).

The following lemma expresses the informal idea discussed above that an
atom is determined outside of some finite radius.

Lemma B.10. Let θ(x) be a p-free atom, then there exists N ∈ N such that
for all n ≥ N

M |= θ((1,−n)) ⇐⇒ N |= θ(n). (11)

Proof. Let θ(x) := (t1 = t2). If t1 and t2 do not contain x, then the claim
holds trivially. If t1 and t2 both contain x, then by Lemma B.9 we have

M |= θ((1,−n)) ⇔ Z |= θ(−n), (12)

for all n ∈ N. In Z the atom θ is an equation between two linear functions.
Hence there are two cases to consider. If θ is true in Z in at most one point,
then there exists N ∈ N such that for all m ∈ Z with |m| ≥ N we have
Z ̸|= θ(m). Thus M ̸|= θ((1,−m)) and N ̸|= θ(m) for m ≥ N . Otherwise,
if θ is true in more than one point of Z, then θ is true everywhere in Z and
we have M |= θ((1,−m)) and N |= θ(m) for all m ≥ 0. If t1 contains x, but
t2 does not contain x, then clearly M ̸|= θ((1,m)) for all m ∈ Z. Moreover
M |= θ((0,m)) if and only if N |= θ(m) for all m ≥ 0. Clearly N |= θ(m) for
at most one m ∈ N, hence there exists N ∈ N such that N ̸|= θ(m) for all
m ≥ N . Hence we have M ̸|= θ((1,−m)) and M ̸|= θ((0,m)) for all m ≥ N .
This completes the proof.

Thanks to the property shown in the lemma above, we can now quite
easily show that M is a model of Open(L′)-IND−.

Lemma B.11. M |= Open(L′)-IND−.

Proof. Let φ(x) be a quantifier-free p-free formula and assume that M |=
φ(0) and M |= φ(x) → φ(s(x)). Let (b, n) ∈ |M|. If b = 0, then the
claim follows by a straightforward induction and the definition of the model
M. If b = 1, then we consider the atoms of the formula φ(x). By applying
Lemma B.10 to the atoms of φ we obtain a natural number M such that
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for all m ≥ M we have M |= φ((1,−m)) ⇔ M |= φ((0,m)). Clearly,
there exists a natural number n′ with n′ ≤ n and n′ ≤ −M . Then we
have M |= φ((1, n′)) because we have already shown that M |= φ((0,−n′)).
By applying repeatedly applying the induction step we then obtain M |=
φ((1, n′ + k)) for all k ∈ N. In particular we obtain M |= φ((1, n)).

We can now finally give a proof of Lemma 5.6

Proof of Lemma 5.6. By Lemma B.8 and Lemma B.11 we have M |= T +
(B1) + Open(L′)-IND−. Now observe that (1, 0) +M (1, 0) = (1, 0) but
(1, 0) ̸= (0, 0) = 0M. Hence T + (B1)+Open(L′)-IND− ̸⊢ θ(x, x). Hence by
Proposition B.6 we obtain T +Open(L(T ))-IND− ̸⊢ θ(x, x).

55


	Introduction
	Preliminary Definitions
	Formulas, theories, and clauses
	Skolemization
	Induction and arithmetic

	Saturation-based systems and induction
	Saturation-based proof systems
	Induction rules

	Unrestricted induction and Skolemization
	Representation as logical theory
	Conservativity

	Restricted induction and Skolemization
	Representation as logical theory
	Induction parameters and Skolem symbols

	Unprovability
	Open induction
	Literal induction: a case study

	Conclusion, Future Work, and Remarks
	Appendix
	Appendix

